Skip to main content
Log in

Kinetics of thermal grain boundary grooving for changing dihedral angles

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In his classic paper on thermal grain boundary grooving Mullins [W.W. Mullins, J. Appl. Physics 28, 333 (1957)] assumes that the dihedral angle at the groove root remains constant and predicts that the groove width and depth grow αt 0.25. Here, we derive models describing groove growth while the dihedral angle changes. In our grooving experiments with tungsten at 1350 °C in which the dihedral angle decreased, the growth exponent for the groove depth reached values as high as 0.44 while the growth exponent for the width decreased slightly from Mullins’ value of 0.25. Hence groove width data alone are not sufficient for verifying Mullins’ growth law unless the dihedral angle is constant. The observed changes in the dihedral angle are used as an input for numerical simulations. With the simulations we are able to extract the surface diffusion constants. Atomic force microscope observations of groove widths and depths in tungsten are in excellent agreement with the simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.W. Mullins, J. Appl. Phys. 28, 333 (1957).

    Article  CAS  Google Scholar 

  2. W. Shin, W-S. Seo, and K. Koumoto, J. European Ceramic Soc. 18, 595 (1998).

    Article  CAS  Google Scholar 

  3. M. Jin, E. Shimada, and Y.J. Ikuma, J. Mater. Res . 14, 2548 (1999).

    Article  CAS  Google Scholar 

  4. C.J. Simon, M.S. Thesis, The University of Tennessee, Knoxville, Tennessee (1999).

  5. C. Herring, in The Physics of Powder Metallurgy, edited by W.E. Kinston (McGraw-Hill, New York, 1951), p. 143.

    Google Scholar 

  6. K-Y. Lee and E.D. Case, Eur. Phys. J. AP 8, 197 (1999).

    Article  CAS  Google Scholar 

  7. P. Sachenko, J.H. Schneibel, and W. Zhang, Philos. Mag. A 82, 815 (2002).

    Article  CAS  Google Scholar 

  8. P. Sachenko, Ph.D. Thesis, Oakland University, Rochester, Michigan (2001).

  9. C.M. Elliott and H. Garche, Adv. Math. Sci. Appl. 7, 467 (1997).

    Google Scholar 

  10. W.M. Robertson, J. Appl. Phys. 42, 463 (1971).

    Article  Google Scholar 

  11. W. Zhang and J.H. Schneibel, Comp. Mater. Sci. 3, 347 (1995).

    Article  Google Scholar 

  12. F.Y. Genin, W.W. Mullins, and P. Wynblatt, Acta Metall. Mater. 40, 3239 (1992).

    Article  CAS  Google Scholar 

  13. B. Sun and Z. Suo, Acta Mater. 45, 4953 (1997).

    Article  CAS  Google Scholar 

  14. B.D. Coleman, R.S. Falk, and M. Moakher, Siam J. Sci. Comput. 17, 1434 (1996).

    Article  Google Scholar 

  15. M. Khenner, A. Averbuch, M. Israeli, and M. Nathan, J. Comp. Phys. 170, 764 (2001).

    Article  CAS  Google Scholar 

  16. Numerical Algorithms Group, NAG Fortran Library (Mark 19, Downers Grove, IL, 1999), available from http//www.nag.com

  17. W. Zhang and I. Gladwell, in Numerical Treatment of Multiphase Flows in Porous Media, edited by Z. Chen, R.E Ewing, and Z-C. Shi, p. 419. (Springer-Verlag, Berlin//Heidelberg, 1999).

    Google Scholar 

  18. W. Zhang and J.H. Schneibel, Acta Metall. Mater. 43, 4377 (1995).

    Article  CAS  Google Scholar 

  19. P.N. Brown, G.D. Byrne, and A.C. Hindmarsh, Siam J. Sci. Comput. 10, 1038 (1989).

    Article  Google Scholar 

  20. R.M. German, Sintering Theory and Practice (Wiley, New York, 1996, p. 533).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Sachenko, P. & Schneibel, J.H. Kinetics of thermal grain boundary grooving for changing dihedral angles. Journal of Materials Research 17, 1495–1501 (2002). https://doi.org/10.1557/JMR.2002.0222

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0222

Navigation