Skip to main content
Log in

Reactive sputter deposition of highly oriented AlN films at room temperature

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Textured as well as epitaxial thin AlN films are of great interest for a wide range of electro-acoustic and optoelectronic applications. Reduction of the deposition temperature is of vital importance in a number of applications due to thermal budget limitations. In this work we systematically studied the influence of the process parameters on the film properties and identified the factors leading to improved film quality as well as reduced deposition temperature with pulsed direct current sputtering in an Ar/N2 atmosphere. We demonstrated that fully textured (0002) films can be grown under a wide range of conditions. At the same time the full width at half-maximum (FWHM) of the rocking curve of the (0002) XRD peak was found to vary systematically with process conditions—depostion rate, process pressure, gas composition, and substrate temperature. The best films showed a FWHM of 1.2°. We found that by far the most important factor is the arrival energy of the sputtered Al atoms, which is primarily controlled by the process pressure. We report for the first time that fully textured AlN films with a FWHM of under 2° can be grown at room temperature. Other important factors are the ion and electron bombardment of the films and substrate temperature as well as gas composition, although their influence is not as dramatic. Generally, the film quality increases with temperature. Bias and electron bombardment within a certain range also lead to better films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.V. Wright, in A review of SAW resonator filter technology (Proc. IEEE Ultrason. Symp., 1992), pp. 29–38.

    Google Scholar 

  2. J.S.W.a.K.M. Lakin, Appl. Phys. Lett. 40, 308 (1981).

    Google Scholar 

  3. M.B. Assouar, O. Elmazria, R. Jimenez Rioboo, F. Sarry, and P. Alnot, Appl. Surf. Sci. 164, 200 (2000).

    Article  CAS  Google Scholar 

  4. A. Hachigo and D.C. Malocha, SAW Device Modeling Including Velocity Dispersion Based on /Diamond/Si Layered Structures. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 45, 660 (1998).

    CAS  Google Scholar 

  5. N.W. Emanetoglu, C.G., Y. Liu, S. Liang, Y. Lu, Mater. Sci. Semicond. Proc. 2, 247 (1999).

    Article  CAS  Google Scholar 

  6. M.B. Assouar, O.E., R. Jimenez Rioboo, F. Sarry, and P. Alnot, Simulation of SAW Filter Based on ZnO/Diamond/Si Layered Structure by Simulator Using Coupling of Mode Theory and Including Velocity Dispersion. European Frequency and Time Forum Proceedings, 2000.

  7. S. Ono, K.W.a.S.H., in Wave Electronics (Elsevier, Amsterdam, The Netherlands, 1976), pp. 35–49.

    Google Scholar 

  8. S. Shikata, H.N., A. Hachigo, New Diamond and Frontier Carbon Technol. 9, 75 (1999).

    CAS  Google Scholar 

  9. K. Yamanouchi, N.S.a.T.S., SAW Propatation Characteristics and Fabrication Technology of Piezoelectric Thin Film/Diamond Structure. IEEE Ultrasonics Symposium, 1989: 351–354.

    Google Scholar 

  10. A.F. Belyanin, A.N.B.-B., L.L. Bouilov and B.V. Spitsyn, J. Chemical Vapor Deposition 5, 267 (1997).

    CAS  Google Scholar 

  11. M-S. Lee, F-C.C., S. Wu, and L. Wu, Jpn. J. Appl. Phys. 40, 4590 (2001)

    Article  CAS  Google Scholar 

  12. K-S. Kao, C.-C.C.a.Y.-C.C., Jpn. J. Appl. Phys. 40, 4969 (2001).

    Article  CAS  Google Scholar 

  13. M. Ishihara, T.M., T. Kumagai, T. Nakamura, S. Fujiwara, Y. Ebata, S. Shikata, H. Nakahata, A. Hachigo, and Y. Koga, Jpn. J. Appl. Phys. 40(Part1, No 8), 5065 (2001).

    Article  CAS  Google Scholar 

  14. H. Okano, N.T., Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, Preparation of Aluminum Nitride Thin Films by Reactive Sputtering and Their Applications to GHz-Band Surface Acoustic Wave Devices. 1994, pp. 166–168.

  15. H.M. Liaw, F.S.H., The Characterization of Sputtered Polycrystalline Aluminum Nitride on Silicon by Surface Acoustic Wave Measurements. IEEE UFFC, 1995, pp. 404–409.

  16. F.S. Hickernell, H.M.L., The Structural and Acoustic Properties of Sputtered Aluminum Nitride on Silicon. IEEE UFFC, 1995, pp. 543–546.

  17. H. Liaw, The Characterization of Sputtered Polycrystalline Aluminum Nitride on Silicon by Surface Acoustic Wave Measurements. IEEE Transactions on ultrasonics, ferroelectrics and frequency control, 1995. 42, pp. 404–409.

    Article  Google Scholar 

  18. L. Yong, J. Vac. Sci. Technol. A 15, 390 (1997).

    Article  CAS  Google Scholar 

  19. C. Caliendo, G.S., P. Verardi, E. Verona, Piezoelectric AlN Film for SAW Devices Applications. IEEE Ultrasonics Symposium, 1993. pp. 249–252.

    Google Scholar 

  20. Segall, W.R.L.L.a.B., Phys. Rev. B 43, 7070 (1991).

  21. S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992).

    Article  CAS  Google Scholar 

  22. L. McNeil, M. Grimsditch, and R.H. French, J. Am. Ceram. Soc. 76, 1132 (1993).

    Article  CAS  Google Scholar 

  23. Mikoshiba, K.T.a.N., Zero Temperature-Coefficient SAW Devices on AlN Epitaxial Films. IEEE Trans. on Sonics and Ultrasonics, 1985. 32, pp. 634–644.

  24. G. Carlotti, F.S.H., H.W. Liaw, L. Palmieri, G. Socino, and E. Verona ., The Elastic Constants of Sputtered Aluminum Nitride Films. Proc. IEEE Ultrason. Symp., 1995, pp. 353–356.

    Google Scholar 

  25. S. Tungasmita, Dissertation No. 711, Linköping University, Sweden, (2001).

  26. I. Petrov, V. Orlinov, I. Ivanov, and J. Kourtev, Contrib. Plasma Phys. 28, 157 (1988).

    Article  Google Scholar 

  27. I. Petrov, L.H., U. Helmerrson, J.E. Sundgren and J.E. Green, Thin Solid Films 169, 299 (1989).

    Article  CAS  Google Scholar 

  28. R. Behrisch, Topics Appl. Phys. 47, 37 (1981).

    Google Scholar 

  29. J.F. O’Hanlon, A User’s Guide to VacuumTechnology, 2nd ed. (Wiley-Interscience).

  30. R.S. Naik, J. Electrochem. Soc., 142, 691 (1999).

    Article  Google Scholar 

  31. F.S. Hickernell, in Advances in Surface Acoustic Wave Technology, Systems and Applications. Selected Topics in Electronics and Systems, Vol. 19, edited by C.W. Ruppel and T.A. Fjeldly (World Scientific, 2000), pp. 51–101.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iriarte, G.F., Engelmark, F. & Katardjiev, I.V. Reactive sputter deposition of highly oriented AlN films at room temperature. Journal of Materials Research 17, 1469–1475 (2002). https://doi.org/10.1557/JMR.2002.0218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0218

Navigation