Skip to main content
Log in

Preparation and luminescence properties of neodymium(iii) oxide nanocrystals dispersed in sol-gel titania/(γ-glycidoxypropyl)trimethoxysilane composite thin films

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Neodymium(III) oxide nanocrystals prepared by an inverse microemulsion technique have been dispersed in sol-gel titania/(γ-glycidoxypropyl)trimethoxysilane composite thin films at low temperature. Transmission electron microscopy and x-ray diffraction were used to characterize the phosphor nanoparticles and show that the neodymium(III) oxide nanoparticles have a nanocrystal structure and the size of the nanoparticles is in the range from 5 to 60 nm. An intense up-conversion emission in violet (399 nm) color from neodymium(III) oxide nanocrystals upon excitation with a yellow light (577 nm) has been observed. Two ultraviolet emissions at 347 and 372 nm and a blue emission at 466 nm have also been observed, and those are assigned to electronic transitions appropriately. A relatively strong room-temperature photoluminescence emission at 1064 nm corresponding to the 4F3/24I11/12 transition of neodymium ion has been measured as a function of the heat treatment temperature. In addition to this emission, two other emissions at 890 and 1336 nm have also been observed. Especially, a clear shoulder peak at 1145 nm, which could probably be resulting from the host matrix, was observed in all measured samples, and this shoulder peak reached a maximum intensity after a heat treatment at 300 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al.L. Efros and A.L. Efros, Sov. Phys. Semicond. 16, 772 (1982).

    Google Scholar 

  2. L.E. Brus, J. Chem. Phys. 80, 4403 (1984).

    Article  CAS  Google Scholar 

  3. Hasselbarth, A. Eychmuller, and H. Weller, Chem. Phys. Lett. 203, 271 (1993).

    Article  Google Scholar 

  4. A. Henglein, A. Kumar, E. Janata, and H. Weller, Chem. Phys. Lett. 132, 133 (1986).

    Article  CAS  Google Scholar 

  5. Y. Wang, Acc. Chem. Res. 24, 133 (1991).

    Article  CAS  Google Scholar 

  6. L. Spanhel, M. Hnase, H. Weller, and A. Henglein, J. Am. Chem. Soc. 109, 5649 (1987).

    Article  CAS  Google Scholar 

  7. V.L. Colvin, M.C. Schlamp, and A.P. Alivisatos, Nature 370, 354 (1994).

    Article  CAS  Google Scholar 

  8. R.N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994).

    Article  CAS  Google Scholar 

  9. L.E. Brus, IEEE J. Quantum Electron. 22, 1909 (1986).

    Article  Google Scholar 

  10. R.N. Bhargava, D. Gallagher, and T. Welker, J. Lumin . 60, 61, 275 (1994).

    Article  Google Scholar 

  11. S. Oliveirade, M.T. Araujo, and A.S. Goveia Neto, J. Appl. Phys. 83, 604 (1998).

    Article  Google Scholar 

  12. Kermaoui, C. Barthou, J.P. Denis, and B. Blanzat, J. Lumin. 29, 295 (1984).

    Article  Google Scholar 

  13. H. Berthou and C.K. Jorgensen, Opt. Lett. 15, 1100 (1990).

    Article  CAS  Google Scholar 

  14. J. Wang, L. Reekie, W.S. Brocklesby, Y.T. Chow, and D.N. Payne, J. Non. Cryst. Solids 180, 201 (1995).

    Google Scholar 

  15. B. Layne, W.H. Lowdermilk, and M.J. Weber, Phys. Rev. B 16, 10 (1997).

    Article  Google Scholar 

  16. M. Benatsou and M. Bouazaoui, Opt. Commun, 137, 14 (1997).

    Article  Google Scholar 

  17. M. Naftaly and A. Jha, J. Appl. Phys. 87, 2098 (2000).

    Article  CAS  Google Scholar 

  18. X. Zhang, F. Lahoz, C. Serrano, G. Lacoste, and E. Daran, IEEE J. Quantum Electron. 36, 243 (2000).

    Article  CAS  Google Scholar 

  19. Q.J. Zhang, P. Wang, X.F. Sun, Y. Zhai, P. Dai, B. Yang, M. Hai, and J.P. Xie, Appl. Phys. Lett. 72, 407 (1998).

    Article  CAS  Google Scholar 

  20. R. Gerhardt, J. Kleine-Bo¨rger, L. Beilschmidt, M. Frommeyer, H. Do¨tsch, and B. Gather, Appl. Phys Lett. 75, 1210 (1999).

    Article  CAS  Google Scholar 

  21. J. Wang, L. Reckie, W.S. Brocklesby, Y.T. Chow, and D.N. Payne, J. Non-cryst. Solids 180, 207 (1995).

    Article  CAS  Google Scholar 

  22. M.B. Saisudha, K.S.R. Koteswara Rao, H.L. Bhat, and J. Ramakrishna, J. Appl. Phys. 80, 4845 (1996).

    Article  CAS  Google Scholar 

  23. L. Nagli, A. German, and A. Katzir, J. Appl. Phys. 85, 2114 (1999).

    Article  CAS  Google Scholar 

  24. Y. Kawamura, Y. Wada, Y. Hasegawa, M. Iwamuro, T. Kitamura, and S. Yanagida, Appl. Phys. Lett. 74, 3245 (1999).

    Article  CAS  Google Scholar 

  25. H. Schmidt and H. Wolter, J. Non-Cryst. Solids 121, 428 (1990).

    Article  CAS  Google Scholar 

  26. S. Motakef, J.M. Boulton, and D.R. Uhlmann, Opt. Lett. 19, 1125 (1994).

    Article  CAS  Google Scholar 

  27. D. Shamrakov and R. Reisfeld, Chem. Phys. Lett. 213, 47 (1993).

    Article  CAS  Google Scholar 

  28. Y. Sorek, R. Reisfeld, and R. Tenne, Chem. Phys. Lett. 227, 242 (1994).

    Article  Google Scholar 

  29. Y. Sorek, M. Zevin, and R. Reisfeld, Chem. Mater. 9, 670 (1997).

    Article  CAS  Google Scholar 

  30. M.J.F. Digonnet, Rare Earth Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993), pp. 50–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxiu Que.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Que, W., Hu, X., Gan, L.H. et al. Preparation and luminescence properties of neodymium(iii) oxide nanocrystals dispersed in sol-gel titania/(γ-glycidoxypropyl)trimethoxysilane composite thin films. Journal of Materials Research 17, 1399–1405 (2002). https://doi.org/10.1557/JMR.2002.0208

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0208

Navigation