Skip to main content
Log in

Adhesion of Cu and low-k dielectric thin films with tungsten carbide

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The adhesion of copper and various dielectric materials to tungsten carbide was studied using interfacial critical debond energies obtained by the four-point flexure method. Tungsten carbide (W2C), films 33.3 nm thick, were vapor deposited onto SiO2, spin-on carbon polymer resin (CPR), chemically vapor deposited organosilicate glass (OSG), and spin-on siloxane-organic polymer (SOP) surfaces using direct-current magnetron sputtering of a W metal target and a methane substrate plasma. Thick copper films (42.5 nm) were vapor deposited onto W2C. Some interfaces were modified by an Ar plasma, 1-nm W deposition, or O2 plasma treatment prior to Cu deposition. A W2C film deposited onto a CPR substrate was annealed for 2 h at 673 K in a 99% N2/1% H2gas mixture. For the untreated dielectric surfaces, the debond energy ranged from 39.9 to 3.95 J/m2. In order of descending adhesion energy, the substrates are ranked CPR, SiO2, SOP, and OSG. Ar plasma treatment of the SiO2 surface increased the debond energy from 20.3 to 41.3 J/m2. The Cu/W2C debond energy was 20.4 J/m2. Ar plasma or 1-nm W deposition treatment to the carbide surface moved the point of delamination from the Cu/W2C interface to the W2C/CPR interface for a Cu/W2C/CPR multilayer structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ohring, The Materials Science of Thin Films (Academic Press, San Diego, CA, 1992), pp. 439–446.

    Google Scholar 

  2. J.W. Hutchinson and Z. Suo, in Advances in Applied Mechanics, edited by J.W. Hutchinson and T.Y. Wu (Academic Press, New York, 1991), pp. 63–191.

    Google Scholar 

  3. P.G. Charlambides, J. Lund, A.G. Evans, and R.M. McMeeking, J. Appl. Mech. 56, 77 (1989).

    Article  Google Scholar 

  4. A.G. Evans, M. Ru¨hle, B.J. Dalgleish, and P.G. Charlambides, Mater. Sci. Eng. A 126, 53 (1990).

    Article  Google Scholar 

  5. A.G. Evans, M.D. Drory, and M.S. Hu, J. Mater. Res . 3, 1043 (1988).

    Article  CAS  Google Scholar 

  6. R.H. Dauskardt, M. Lane, Q. Ma, and N. Krishna, Eng. Fract. Mech. 61, 141 (1998).

    Article  Google Scholar 

  7. M. Lane, A. Vainchtein, H. Gao, and R.H. Dauskardt, J. Mater Res. 15, 2758 (2000).

    Article  CAS  Google Scholar 

  8. P.G. Charlambides, H.C. Cao, J. Lund, and A.C. Evans, Mech. Mater. 8, 269 (1990).

    Article  Google Scholar 

  9. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, in Handbook of X-ray Photoelectron Spectroscopy, edited by J. Chastain and J.R.C. King (Physical Electronics, Eden Prairie, MN, 1995).

    Google Scholar 

  10. Y-M. Sun, S.Y. Lee, A.M. Lemonds, E.R. Engbrecht, S. Veldman, J. Lozano, J.M. White, J.G. Ekerdt, I. Emesh, and K. Pfeifer, Thin Solid Films 397, 109 (2001).

    Article  CAS  Google Scholar 

  11. S. Wang, H.Y. Tsai, and S.C. Sun, Thin Solid Films 394, 180 (2001).

    Article  CAS  Google Scholar 

  12. C. Whitman, M.M. Moslehi, A. Paranjpe, L. Velo, and T. Omstead, J. Vac. Sci. Technol. A 17, 1893 (1999).

    Article  CAS  Google Scholar 

  13. J.D. Plummer, M.D. Deal, and P.B. Griffin, Silicon VLSI Technology Fundamentals, Practice and Modeling (Prentice Hall, Upper Saddle River, NJ, 2000).

    Google Scholar 

  14. M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (John Wiley & Sons, New York, 1994).

    Google Scholar 

  15. H. Ono, T. Nakano, and T. Ohta, Appl. Phys. Lett. 64, 1511 (1994).

    Article  CAS  Google Scholar 

  16. S. Veldman, A.M. Lemonds, K. Kershen, Y-M. Sun, I. Emesh, K. Pfeifer, J.M. White, and J.G. Ekerdt, in Advanced Metallization Conference 2000 (AMC 2000), edited by D. Edelstein, G. Dixit, Y. Yasuda, and T. Ohba, (Materials Research Society, Warrendale, PA, 2000), pp. 307–312.

    Google Scholar 

  17. J. Israelachvili, Intermolecular and Surface Forces, 2nd ed. (Academic Press, San Diego, CA, 1992), pp. 112–146.

    Google Scholar 

  18. D.R. Askeland, The Science and Engineering of Materials (PWS, Boston, MA, 1994), p. 797.

    Google Scholar 

  19. P.T.B. Shaffer, in Carbide, Nitride, and Boride Materials Synthesis and Processing, edited by A.W. Weimer (Chapman and Hall, London, United Kingdom, 1997), p. 643.

    Google Scholar 

  20. S. Lee, D.J. Kim, S.H. Yang, J. Park, S. Sohn, K. Oh, Y.T. Kim, J.Y. Kim, G.Y. Yeom, and J.W. Park, J. Appl. Phys. 85, 473 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Lemonds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemonds, A.M., Kershen, K., Bennett, J. et al. Adhesion of Cu and low-k dielectric thin films with tungsten carbide. Journal of Materials Research 17, 1320–1328 (2002). https://doi.org/10.1557/JMR.2002.0197

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0197

Navigation