Skip to main content
Log in

Crystallization mechanism of Nd1+xBa2−xCu3O7−y and YBa2Cu3O7−y films deposited by metalorganic deposition method using trifluoroacetates

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

YBa2Cu3O7−y(Y123) and Nd1+xBa2−xCu3O7−y (Nd123) films were deposited by the metalorganic deposition method, and the growth mechanism of these films was investigated by high-resolution transmission electron microscopy and energy dispersive x-ray spectroscopy. The Y123 and Nd123 films were prepared by spin-coating LaAlO3 (001) and SrTiO3 (STO) (001) substrates, respectively, with solutions including trifluoroacetates. Then, the samples were heat treated at 673 K in a humid O2 gas flow to form amorphous precursor films. Finally, the precursor films were heated at higher temperatures for 0–30 min in a humid Ar/O2 gas flow and cooled rapidly from those annealing temperatures. It was found that CuO crystals with a size of 10–20 nm are segregated in the Y123 and Nd123 amorphous precursor films. In the Y123 quenched film prepared by cooling the precursor film rapidly after the heat-treatment at 1048 K for 30 min, a polycrystalline film including Y2Cu2O5, BaF2, and CuO crystals was found to be generated on the c-axis-oriented Y123 film. In contrast, in the Nd123 quenched films, (NdBa)2CuO4(Nd201) phase was found to be formed first on the surface of the STO substrate. In conclusion, the c-axis-oriented Y123 film is formed by diffusion and reaction of Y2Cu2O5, BaF2, and CuO crystals, and the Nd201 phase reacts with BaF2 and CuO crystals in a humid atmosphere to form a c-axis-oriented Nd123 film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gupta, G. Koren, E.A. Giess, N.R. Moore, E.J.M. Q’Sullivan, and E.I. Cooper, Appl. Phys. Lett. 52, 163 (1988).

    Article  CAS  Google Scholar 

  2. M. Kawai, T. Kawai, H. Masuhira, and M. Takahashi, Jpn. J. Appl. Phys. 26, L1740 (1987).

    Article  CAS  Google Scholar 

  3. A.H. Hamdi, J.V. Mantese, A.L. Micheli, R.C.O. Laugal, D.F. Dungan, Z.H. Zhang, and K.R. Padmanabhan, Appl. Phys. Lett. 51, 2152 (1987).

    Article  CAS  Google Scholar 

  4. C.E. Rice, R.B. van Dover, and G.J. Fisanick, Appl. Phys. Lett. 51, 1842 (1987).

    Article  CAS  Google Scholar 

  5. M.E. Gross, M. Hong, S.H. Liou, P.K. Gallagher, and J. Kwo, Appl. Phys. Lett. 52, 160 (1988).

    Article  CAS  Google Scholar 

  6. T. Manabe, W. Kondo, S. Mizuta, and T. Kumagai, Jpn. J. Appl. Phys. 30, L1641 (1991).

    Article  CAS  Google Scholar 

  7. T. Manabe, I. Yamaguchi, S. Nakamura, W. Kondo, T. Kumagai, and S. Mizuta, J. Mater. Res. 10, 1635 (1995).

    Article  CAS  Google Scholar 

  8. K. Yamagiwa and I. Hirabayashi, Physica C. 304, 12 (1998).

    Article  CAS  Google Scholar 

  9. F. Parmigiani, G. Chiarello, N. Ripamonti, H. Goretzki, and U. Roll, Phys. Rev. B. 36, 7148 (1987).

    Article  CAS  Google Scholar 

  10. A. Gupta, R. Jagannathan, E.I. Cooper, E.A. Giess, J.I. Landman, and B.W. Hussey, Appl. Phys. Lett. 52, 2077 (1988).

    Article  CAS  Google Scholar 

  11. P.C. McIntyre, M.J. Cima, and M.F. Ng, J. Appl. Phys. 68, 4183 (1990).

    Article  CAS  Google Scholar 

  12. P.C. McIntyre, M.J. Cima, J.A. Smith Jr., R.B. Hallock, M.P. Siegal, and J.M. Phillips, J. Appl. Phys. 71, 1868 (1992).

    Article  CAS  Google Scholar 

  13. P.C. McIntyre and M.J. Cima, J. Mater. Res. 9, 2219 (1994).

    Article  CAS  Google Scholar 

  14. P.C. McIntyre, M.J. Cima, and A. Roshko, J. Appl. Phys. 77, 5263 (1995).

    Article  CAS  Google Scholar 

  15. P.C. McIntyre, M.J. Cima, and A. Roshko, J. Cryst. Growth. 149, 64 (1995).

    Article  CAS  Google Scholar 

  16. J.A. Smith, M.J. Cima, and N. Sonnenberg, IEEE Trans. Appl. Supercond. 9, 1531 (1999).

    Article  Google Scholar 

  17. T. Araki, Y. Takahashi, K. Yamagiwa, Y. Iijima, K. Takeda, Y. Yamada, J. Shibata, T. Hirayama, and I. Hirabayashi, Physica C 357–360, 991 (2001).

    Article  Google Scholar 

  18. H. Fuji, T. Honjo, Y. Nakamura, T. Izumi, T. Araki, I. Hirabayashi, Y. Shiohara, Y. Iijima, and K. Takeda, Physica C 357–360, 1011 (2001).

    Article  Google Scholar 

  19. L. Wu, Y. Zhu, V.F. Solovyov, H.J. Wiesmann, A.R. Moodenbaugh, R.L. Sabatini, and M. Suenaga, J. Mater. Res. 16, 2869 (2001).

    Article  CAS  Google Scholar 

  20. T. Honjo, H. Fuji, D. Huang, Y. Nakamura, T. Izumi, and Y. Shiohara, in High-Temperature Superconductors—Crystal Chemistry Processing and Properties, edited by U. (Balu) Balachardran, H.C. Freyhardt, T. Izumi, and D.C. Larbalestier, (Mater. Res. Symp. Proc. 659, Warrendale, PA, 2001), p. II 4.2.

    Google Scholar 

  21. J. Shibata, K. Yamagiwa, I. Hirabayashi, and T. Hirayama, Jpn. J. Appl. Phys. 37, L1141 (1998).

    Article  CAS  Google Scholar 

  22. J. Shibata, K. Yamagiwa, I. Hirabayashi, Xiuliang Ma, J. Yuan, T. Hirayama, and Y. Ikuhara, Jpn. J. Appl. Phys. 38, 5050 (1999).

    Article  CAS  Google Scholar 

  23. M. Yoshizumi, Doctoral Thesis, The University of Tokyo, Tokyo, Japan (2001).

  24. JCPDS Powder Diffraction File, No. 38-342 (International Center for Diffraction Data).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junko Shibata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibata, J., Honjo, T., Fuji, H. et al. Crystallization mechanism of Nd1+xBa2−xCu3O7−y and YBa2Cu3O7−y films deposited by metalorganic deposition method using trifluoroacetates. Journal of Materials Research 17, 1266–1275 (2002). https://doi.org/10.1557/JMR.2002.0190

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0190

Navigation