Skip to main content
Log in

Highly Ordered Nanoporous Alumina Films: Effect of Pore Size and Uniformity on Sensing Performance

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of pore size and uniformity on the humidity response of nanoporous alumina, formed on aluminum thick films through an anodization process, is reported. Pore sizes examined range from approximately 13 to 45 nm, with a pore size standard deviations ranging from 2.6 to 7.8 nm. The response of the material to humidity is a strong function of pore size and operating frequency. At 5 kHz an alumina sensor with an average pore size of 13.6 nm (standard deviation 2.6 nm) exhibits a well-behaved change in impedance magnitude of 103 over 20% to 90% relative humidity. Increasing pore size decreases the humidity range over which the sensors have high sensitivity and shifts the operating range to higher humidity values. Cole–Cole plots of 5 to 13 MHz measured impedance spectra, modeled using equivalent circuits, are used to resolve the effects of water adsorption and ion migration within the adsorbed water layer. The presence of impurity ions within the highly ordered nano-dimensional pores, accumulated during the anodization process, appear highly beneficial for obtaining a substantial variation in measured impedance over a wide range of humidity values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.M. Kulwicki, J. Am. Ceram. Soc., 74, 697 (1991).

    CAS  Google Scholar 

  2. H. Arai and T. Seiyama, in Sensors: A Comprehensive Survey, edited by W. Gopel, J. Hesse, and J.N. Zemel (VCH, Weinheim, Germany, 1992), Vol. 3, pp. 981–1012.

  3. E. Traversa, Sens. Actuators B 23, 135 (1995).

    CAS  Google Scholar 

  4. N. Yamazoe and Y. Shimizu, Sens. Actuators 10, 379 (1986).

    CAS  Google Scholar 

  5. A. Bearzotti, I. Fratoddi, L. Palummo, S. Petrocco, A. Furlani, C. Lo Sterzo, and M.V. Russo. Sens. Actuators B 76, 316 (2001).

    CAS  Google Scholar 

  6. Y. Sakai, Y. Sadaoka, and M. Matsuguchi, Sens. Actuators B 35, 85 (1996).

    CAS  Google Scholar 

  7. C.A. Grimes and D. Kouzoudis, Sens. Actuators A 84, 205 (2000).

    CAS  Google Scholar 

  8. K.G. Ong, C.A. Grimes, C.L. Robbins, R.S. Singh, Sens. Actuators A 93, 33 (2001).

    CAS  Google Scholar 

  9. T. Seiyama, N. Yamazoe, and H. Arai, Sens. Actuators 4, 85 (1983).

    CAS  Google Scholar 

  10. L. Ketron, Ceram. Bull. 68, 860 (1989).

    Google Scholar 

  11. E. Traversa, G. Gusmano, and A. Montenero, Eur. J. Solid State Inorg. Chem. 32, 719 (1995).

    CAS  Google Scholar 

  12. M.K. Jain, M.C. Bhatnagar, and G.L. Sharma, Sens. Actuators B 55, 180 (1999).

    CAS  Google Scholar 

  13. O.K. Varghese and L.K. Malhotra, J. Appl. Phys. 87, 7457 (2000).

    CAS  Google Scholar 

  14. G. Sberveglieri, R. Murri, and N. Pinto, Sens. Actuators B 23, 177 (1995).

    CAS  Google Scholar 

  15. E. Traversa, M. Baroncini, E.D. Bartolomeo, G. Gusmano, P. Innocenzi, A. Martucci, and A. Bearzotti, J. Eur. Ceram. Soc. 19, 753 (1999).

    CAS  Google Scholar 

  16. K-S. Chou, T-K. Lee, and F-J. Liu, Sens. Actuators B 56, 106 (1999).

    CAS  Google Scholar 

  17. E. Traversa, G. Gnappi, A. Montenero, and G. Gusmano, Sens. Actuators B 31, 59 (1996).

    CAS  Google Scholar 

  18. Y-C. Yeh, T-Y. Tseng, and D-A. Chang, J. Am. Ceram. Soc. 72, 1472 (1989).

    CAS  Google Scholar 

  19. E. Traversa, J. Am. Ceram. Soc. 78, 2625 (1995).

    CAS  Google Scholar 

  20. T. Yamamoto and K. Murukami, in Chemical Sensor Technology, edited by T. Seiyama (Kodansha and Elsevier, Amsterdam, The Netherlands, 1989), Vol. 2, pp. 133–149.

  21. F. Ansbacher and A.C. Jason, Nature 171, 177 (1953).

    CAS  Google Scholar 

  22. V.K. Khanna and R.K. Nahar, Sens. Actuators 5, 187 (1984).

    CAS  Google Scholar 

  23. S. Basu, S. Chatterjee, M. Saha, S. Bhandyopadhay, K.K. Mistry, and K. Sengupta, Sens. Actuators B 79, 182 (2001).

    CAS  Google Scholar 

  24. G. Sberveglieri, R. Anchisini, R. Murri, C. Ercoli, and N. Pinto, Sens. Actuators B 32, 1 (1996).

    CAS  Google Scholar 

  25. L.H. Mai, P.T.M. Hoa, N.T. Binh, N.T.T. Ha, and D.K. An, Sens. Actuators B 66, 63 (2000).

    CAS  Google Scholar 

  26. S. Chatterjee, S. Basu, S. Bandyopadhay, K.K. Mistry, and K. Sengupta, Rev. Sci. Inst. 72, 2792 (2001).

    CAS  Google Scholar 

  27. R.K. Nahar, Sens. Actuators B 63, 49 (2000).

    CAS  Google Scholar 

  28. Z. Chen, M-C. Jin, and C. Zhen, Sens. Actuators 2, 167 (1990).

    CAS  Google Scholar 

  29. S. Basu, M. Saha, S. Chatterjee, K.K. Mistry, S. Bandyopadhay, and K. Sengupta, Mater. Lett. 49, 29 (2001).

    CAS  Google Scholar 

  30. Y. Sadaoka, Y. Sakai, and S. Matsumoto, J. Mater. Sci. 21, 1269 (1986).

    CAS  Google Scholar 

  31. Chemical Sensors, edited by T. Seiyama, K. Fueki, J. Shiokawa, and S. Suzuki (Elsevier, New York, 1983).

  32. Y. Shimisu, H. Arai, and T. Seiyama, Sens. Actuators 7, 11 (1985).

    Google Scholar 

  33. S.H. Tao, W.M. Tang, L. Ping, and Y. Xi, Sens. Actuators 19, 61 (1989).

    Google Scholar 

  34. H. Masuda and K. Fukuda, Science, 268, 1466 (1995).

    CAS  Google Scholar 

  35. H. Masuda, F. Hasegwa, and S. Ono, J. Electrochem. Soc. 144, L127 (1997).

    CAS  Google Scholar 

  36. O. Jessensky, F. Muller, and U. Gosele, Appl. Phys. Lett. 72, 1173 (1998).

    CAS  Google Scholar 

  37. J.R. Macdonald, Impedance spectroscopy (John Wiley, New York, 1987).

    Google Scholar 

  38. http://www.tesatape.com

  39. http://www.solartronanalytical.com/downloads/downloads.html

  40. A.E. Falk, B.M. Lacquet and P.L. Swart, Electron. Lett. 28, 166 (1992).

    Google Scholar 

  41. A.K. Jonscher, J. Mater. Sci. 13, 553 (1978).

    CAS  Google Scholar 

  42. A.K. Jonscher, Phys. Status Solidi A 32, 665 (1975).

    CAS  Google Scholar 

  43. W.J. FLeming, SAE Trans., Sec. 2 90, 1656 (1981).

    Google Scholar 

  44. V.K. Khanna and R.K. Nahar, Appl. Surf. Sci. 28, 247 (1987).

    CAS  Google Scholar 

  45. V.K. Kanna and R.K. Nahar, J. Phys. D: Appl. Phys. 19, L141 (1986).

    Google Scholar 

  46. R.K. Nahar, V.K. Khanna, and W.S. Khokle, J. Phys. D: Appl. Phys. 17, 2087 (1984).

    CAS  Google Scholar 

  47. R.K. Nahar and V.K. Khanna, Sens. Actuators B 46, 35 (1998).

    CAS  Google Scholar 

  48. G.C. Wood, P. Skeldon, G.E. Thompson, and K. Shimizu, J. Elec-trochem. Soc. 143, 74 (1996).

    CAS  Google Scholar 

  49. G. Patermarakis and K. Moussoutzanis, J. Electrochem. Soc. 142, 737 (1995).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varghese, O.K., Gong, D., Paulose, M. et al. Highly Ordered Nanoporous Alumina Films: Effect of Pore Size and Uniformity on Sensing Performance. Journal of Materials Research 17, 1162–1171 (2002). https://doi.org/10.1557/JMR.2002.0172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0172

Navigation