Skip to main content
Log in

Filling of Chrysotile Nanotubes with Metals

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanowires were produced by injection of molten Hg and Pb into chrysotile nanotubes. The breakdown of chrysotile and the surface tension of the molten metals are the limiting factors for the filling procedure. The thermal stability of chrysotile nanotubes was investigated by infrared spectrometry, thermogravimetry, differential thermal analysis, and x-ray diffraction analyses. For short-term thermal annealing (30 min) the tube morphology remains stable up to 700 °C. The high surface tension of both molten Pb and Hg (γLV > 200 mN/m) requires external pressure for the melts to penetrate into the tubes. Filling of the tubes was achieved under high pressure and high temperature conditions compatible with the stability range for chrysotile determined in the annealing experiments. Transmission electron microscopy observations confirmed high filling yields for both metals. Almost all nanotubes were partially filled with lead. The length of continuous wires ranged from tens to hundreds of nanometers. Additional experiments with tin were not successful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.G. Chopra, H. Luyken, V.H. Crespi, K. Cherrey, A. Zettl, and M.L. Cohen, Science 269, 966 (1995).

    Article  CAS  Google Scholar 

  2. M. Nath, A. Govindaraj, and C.N.R. Rao, Adv. Mater. 13, 283 (2001).

    Article  CAS  Google Scholar 

  3. E.J.W. Whittaker, Acta Cryst. 9, 855 (1956).

    Article  CAS  Google Scholar 

  4. K. Yada, Acta Cryst. 27, 659 (1971).

    Article  CAS  Google Scholar 

  5. K. Yada, Acta Cryst. 23, 704 (1967).

    Article  CAS  Google Scholar 

  6. P.J.F. Harris, Carbon Nanotubes and Related Structures, New Materials for the Twenty-first Century (Cambridge University Press, Cambridge, United Kingdom, 1999).

    Book  Google Scholar 

  7. Z.L. Zhang, B. Li, Z.J. Shi, Z.N. Gu, Z.Q. Xue, and L.M. Peng, J. Mater. Res. 15, 2658 (2000).

    Article  CAS  Google Scholar 

  8. P.M. Ajayan and S. Iijima, Nature 361, 333 (1993).

    Article  CAS  Google Scholar 

  9. E. Dujardin, T.W. Ebbesen, H. Hiura, and K. Tanigaki, Science 265, 1850 (1994).

    Article  CAS  Google Scholar 

  10. S.C. Tsang, Y.K. Chen, P.J.F. Harris, and M.L.H. Green, Nature 372, 159 (1994).

    Article  CAS  Google Scholar 

  11. J. Sloan, D.M. Wright, H.G. Woo, S. Bailey, G. Brown, A.P.E. York, K.S. Coleman, J.L. Hutchison, and M.L.H. Green, J. Chem. Soc., Chem. Commun. 699–700, 699 (1999).

    Article  Google Scholar 

  12. M. Terrones, N. Grobert, W.K. Hsu, Y.Q. Zhu, W.B. Hu, H. Terrones, J.P. Hare, H.W. Kraut, and D.R.M. Walton, Mater. Res. Bull. 24, 43 (1999).

    Article  CAS  Google Scholar 

  13. V.N. Bogomolov and Y.A. Kumzerov, JETP Lett. 21, 198 (1975).

    Google Scholar 

  14. M.S. Ivanova, Y.A. Kumzerov, V.V. Poborchii, Y.V. Ulashkevich, and V.V. Zhuravlev, Microporous Mater. 4, 319 (1995).

    Article  CAS  Google Scholar 

  15. S.G. Romanov and C.M. Sotomayer Torres, in Nanoscale Science and Technology, edited by N. Garcia (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998), pp. 255–270.

  16. V.V. Poborchii, M.S. Ivanova, and I.A. Salmantina, Superlattices Microstruct. 16, 133 (1994).

    Article  CAS  Google Scholar 

  17. S.G. Romanov, C.M. Sotomayer Torres, H.M. Yates, M.E. Pemble, V. Butko, and V. Tretijakov, J. Appl. Phys. 82, 380 (1997).

    Article  CAS  Google Scholar 

  18. E.A. Zhukov, H.M. Yates, M.E. Pemble, C.M. Sotomayor Torres, and S.G. Romanov, Superlattices Microstruct. 27, 571 (2000).

    Article  CAS  Google Scholar 

  19. G.W. Brindley and J. Zussman, Amer. Min. 42, 461 (1957).

    CAS  Google Scholar 

  20. M.C. Ball and H.F.W. Taylor, Min. Mag. 33, 467 (1963).

    Google Scholar 

  21. G.W. Brindley and R. Hayami, Clays & Clay Minerals 34, 35 (1964).

    Google Scholar 

  22. G.W. Brindley and R. Hayami, Min. Mag. 35, 189 (1965).

    CAS  Google Scholar 

  23. H. De Souza Santos and K. Yada, Clays Clay Min. 27, 161 (1979).

    Article  Google Scholar 

  24. J.M. Howe, Interfaces in Materials (Wiley, New York, 1997).

    Google Scholar 

  25. I. Vavruch, J. Colloid Interface Sci. 169, 249 (1995).

    Article  CAS  Google Scholar 

  26. G.J. Hills and H.J. Høiland, J. Colloid Interface Sci. 99, 463 (1984).

    Article  CAS  Google Scholar 

  27. Z. Wang, P. Lazor, and S.K. Saxena, Phys. B: Condens. Matter 293, 408 (2001).

    Article  CAS  Google Scholar 

  28. H. Grönbeck, D. Tomanek, S.G. Kim, and A. Rosen, Z. Phys. D40, 469 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Métraux, C., Grobéty, B. & Ulmer, P. Filling of Chrysotile Nanotubes with Metals. Journal of Materials Research 17, 1129–1135 (2002). https://doi.org/10.1557/JMR.2002.0167

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0167

Navigation