Skip to main content
Log in

Electrodeposition of Fe–Co Alloys into Nanoporous p-type Silicon: Influence of the Electrolyte Composition

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The cathodic deposition of iron–cobalt alloys inside the pores of anodically formed nanoporous silicon (PS) from p-type Si substrate is investigated with respect to the electrolyte composition. The samples were characterized by scanning electron microscopy, energy dispersive spectrometry, Auger electron spectroscopy, and Fourier transform infrared spectroscopy. Results showed that the nucleation of pure cobalt started at the bottom of the pores and the nucleation of pure iron occurred all over the pore walls, leading to a preferential deposition on top surface of the porous layer. Nevertheless, a low concentration of Co2+ ions (5 at.%) in the electrolyte drastically improved the penetration of iron into the pores. As a result, a good filling of the pores with Co metal as well as with Fe–Co alloys was achieved. It was also shown that the deposition process oxidizes the structure mainly at the pore walls. The results of our investigation indicate that the mechanisms occurring during the electrodeposition of metals on porous p-type silicon substrates are completely different depending on the kind of electrolyte used: pure iron-based electrolyte or cobalt-based solutions. A complete understanding of the deposition process requires further analyses of the carrier transport in PS and of the charge exchange at the Si/electrolyte and PS/electrolyte interfaces. These new results involving the deposition of iron-group materials into porous p-type silicon are useful for future silicon technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hérino, Mater. Sci. Eng., B 69–70, 70 (2000).

    Article  Google Scholar 

  2. C. Renaux, V. Scheuren, and D. Flandre, Micrcelectron. Reliab. 40, 877 (2000).

    Article  Google Scholar 

  3. X.J. Li, De L. Zhu, Q.W. Chen, and Y.H. Zhang, Appl. Phys. Lett. 74, 389 (1999).

    Article  CAS  Google Scholar 

  4. F. Ronkel, J.W. Schultze, and R. Arens-Fischer, Thin Solid Films 276, 40 (1996).

    Article  CAS  Google Scholar 

  5. B.J. Aylett, I.S. Harding, L.G. Earwaker, K. Forcey, and T. Giaddui, Thin Solid Films 276, 253 (1996).

    Article  CAS  Google Scholar 

  6. M. Jeske, J.W. Schultze, M. Thönissen, and H. Münder, Thin Solid Films 255, 63 (1995).

    Article  CAS  Google Scholar 

  7. T. Ito, T. Yoneda, K. Furuta, A. Hatta, and A. Hiraki, Jpn. J. Appl. Phys. 34, L649 (1995).

    Article  CAS  Google Scholar 

  8. P. Steiner, F. Kozlowski, and W. Lang, Thin Solid Films 255, 49 (1995).

    Article  CAS  Google Scholar 

  9. S.O. Izidinov, V.N. Nazarov, and O.E. Shcheglov, Russ. J. Appl. Chem. 68 (Part 1), 519 (1995).

  10. S.A. Gusev, N.A. Korotkova, D.B. Rozenstein, and A.A. Fraerman, J. Appl. Phys. 76, 6671 (1994).

    Article  CAS  Google Scholar 

  11. D.G. Anderson, N. Anwar, B.J. Aylett, L.G. Earwaker, M.I. Nasir, J.P.G. Farr, K. Stiebahl, and J.M. Keen, J. Organomet. Chem. 437, C7 (1992).

    Article  CAS  Google Scholar 

  12. T. Ito, A. Yamama, A. Hiraki, and M. Satou, Appl. Surf. Sci. 41/ 42, 301 (1989).

    Article  Google Scholar 

  13. S.S. Tsao, R.S. Blewer, and J.Y. Tsao, Appl. Phys. Lett. 49, 403 (1986).

    Article  CAS  Google Scholar 

  14. R. Herino, P. Jan, and G. Bomchil, J. Electrochem. Soc. 132, 2513 (1985).

    Article  CAS  Google Scholar 

  15. N. Tsuya, Y. Saito, H. Nakamura, S. Hayano, A. Furugohri, K. Ohta, Y. Wakui, and T. Tokushima, J. Magn. Magn. Mater. 54–57, 1681 (1986).

    Article  Google Scholar 

  16. T.M. Whitney, J.S. Jiang, P. Searson, and C. Chien, Science 261, 1316 (1993).

    Article  CAS  Google Scholar 

  17. L. Piraux, J.M. George, J.F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjla, and A. Fert, Appl. Phys. Lett. 65, 2484 (1994).

    Article  CAS  Google Scholar 

  18. N. Zech, E.J. Podlaha, and D. Landolt, J. Appl. Electrochem. 28, 1251 (1998).

    Article  CAS  Google Scholar 

  19. J. Ebothé and S. Vilain, J. Phys. D: Appl. Phys. 32, 2342 (1999).

    Article  Google Scholar 

  20. E.M. Kakuno, D.H. Mosca, I. Mazzaro, N. Mattoso, W.H. Schreiner, and M.A.B. Gomes, J. Electrochem. Soc. 144, 3222 (1997).

    Article  CAS  Google Scholar 

  21. E.M. Kakuno, R.C. da Silva, N. Mattoso, W.H. Schreiner, D.H. Mosca, and S.R. Teixeira, J. Phys. D: Appl. Phys. 32, 1209 (1999).

    Article  CAS  Google Scholar 

  22. W. Bohne, G.U. Reinsperger, J. Röhrich, G. Rôschert, and B. Selle, Nucl. Instrum. Methods Phys. Res. Sect. B 136–138, 273 (1998).

    Article  Google Scholar 

  23. S. Hong, C. Pirri, P. Wetzel, and G. Gewinner, Phys. Rev. B 55, 13040 (1997).

    Article  CAS  Google Scholar 

  24. S. Teichert, R. Kilper, T. Franke, J. Erben, P. Häussler, W. Henrion, H. Lange, and D. Panknin, Appl. Surf. Sci. 91, 56 (1995).

    Article  CAS  Google Scholar 

  25. MultiPak Software Manual V5.0, Part No. 638366, Rev. A, 02 Oct. 1997 (Physical Electronics, Inc., Eden Prairie, MN, 1994–1997). p. C1.

  26. Z.C. Feng, A.T.S. Wee, and K.L. Tan, J. Phys. D: Appl. Phys. 27, 1968 (1994).

    Article  CAS  Google Scholar 

  27. H. Mizuno, H. Koyama, and N. Koshida, Appl. Phys. Lett. 69, 3779 (1996).

    Article  CAS  Google Scholar 

  28. J. Hilliard, D. Andsager, L. Abu Hassan, H.M. Nayfeh, and M.H. Nayfeh, J. Appl. Phys. 76, 2423 (1994).

    Article  CAS  Google Scholar 

  29. T. Ban, T. Koizumi, S. Haba, N. Koshida, and Y. Suda, Jpn. J. Appl. Phys. 33, 5603 (1994).

    Article  CAS  Google Scholar 

  30. Y.H. Xi, W.L. Wilson, F.M. Ross, J.A. Mucha, E.A. Fitzgerald, J.M. Macaulay, and T.D. Harris, J. Appl. Phys. 71, 2403 (1992).

    Article  Google Scholar 

  31. M.A. Hory, R. Hérino, M. Ligeon, F. Muller, F. Gaspard, I. Mihalcescu, and J.C. Vial, Thin Solid Films 255, 200 (1995).

    Article  CAS  Google Scholar 

  32. A. Brenner, Electrodeposition of alloys (Academic, New York, 1963).

    Google Scholar 

  33. L.J. Gao, G.W. Anderson, and P.R. Norton, J. Appl. Phys. 79, 5795 (1995).

    Article  Google Scholar 

  34. M. Ben-Chorin, F. Möller, and F. Koch, Phys. Rev. B 49, 2981 (1994).

    Article  CAS  Google Scholar 

  35. N.J. Pulsford, G.L.J.A. Rikken, Y.A.R.R. Kessener, E.J. Lous, and A.H.J. Venhuizen, J. Appl. Phys. 75, 636 (1994).

    Article  CAS  Google Scholar 

  36. D. Steivenard and D. Deresmes, Appl. Phys. Lett. 67, 1570 (1995).

    Article  Google Scholar 

  37. A. Bsiesy, B. Gelloz, F. Gaspard, and F. Muller, J. Appl. Phys. 276, 175 (1996).

    Google Scholar 

  38. A.K. Ray, M.F. Mabrook, A.V. Nabok, and S. Brown, J. Appl. Phys. 84, 3232 (1998).

    Article  CAS  Google Scholar 

  39. D.N. Goryachev, G. Polisskii, and O.M. Sreseli, Fiz. Tekh. Polu-provodn. (S. Peterburg) 34, 221 (2000) [Semiconductors 34, 227 (2000)].

  40. M. Jeske, J.W. Schultze, and H. Münder, Electrochim. Acta 40, 1435 (1995).

    Article  CAS  Google Scholar 

  41. L. Montès, F. Muller, F. Gaspard, and R. Hérino, Thin Solid Films 29, 35 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamadache, F., Duvail, J.L., Scheuren, V. et al. Electrodeposition of Fe–Co Alloys into Nanoporous p-type Silicon: Influence of the Electrolyte Composition. Journal of Materials Research 17, 1074–1084 (2002). https://doi.org/10.1557/JMR.2002.0159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0159

Navigation