Skip to main content
Log in

Mechanism of liquid-phase epitaxy growth of NdBa2Cu3O7−xfilm from low-peritectic-temperature YBa2Cu3O7−xseed film

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

NdBa2Cu3O7-x (NdBCO) superconducting films were successfully grown on MgO substrates by liquid-phase epitaxy (LPE) using YBa2Cu3O7-x (YBCO) seed films which have lower peritectic temperatures. Microstructural characterizations using optical and electron microscopes revealed that most of the seed grains decomposed at the high processing temperature and dissolved when they touched the solution. The NdBCO grains were formed first by the quasi-homoepitaxial growth of NdBCO units on the few surviving YBCO seed grains and then grew pendently to cover the large bare surface areas of the MgO substrates quickly by lateral overgrowth. A micrometer-thick melt layer was entrapped between the film and the substrate. Through the few links provided by the surviving seed grains, a stable film/substrate orientation relationship could still be maintained. A semiquantitative analysis was done for the lateral overgrowth process, and two different lateral overgrowth stages were observed with about 50 times difference in the lateral overgrowth rate. Then, a semiquantitative understanding for the entire YBCO-seeded NdBCO LPE growth process was finally reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Zhokhov and G.A. Emel’chenko, J. Cryst. Growth 129, 786 (1993).

    Article  CAS  Google Scholar 

  2. Y. Yamada and Y. Shiohara, Physica C 217, 182 (1993).

    Article  CAS  Google Scholar 

  3. A. Takagi, J.G. Wen, I. Hirabayashi, and U. Mitsutani, J. Cryst. Growth 193, 71 (1998).

    Article  CAS  Google Scholar 

  4. H.J. Scheel, C. Klemenz, F.K. Reinhart, H.P. Lang, and H.J. Gunthrodt, Appl. Phys. Lett. 65, 901 (1994).

    Article  CAS  Google Scholar 

  5. C. Klemenz and H.J. Scheel, Physica C 265, 126 (1996).

    Article  CAS  Google Scholar 

  6. M. Yoshida, T. Nakamoto, T. Kitamura, O.B. Hyun, I. Hirabayashi, and S. Tanaka, Appl. Phys. Lett. 65, 1714 (1994).

    Article  CAS  Google Scholar 

  7. Y. Ishida, T. Kimura, K. Kakimoto, Y. Yamada, Z. Nakagawa, Y. Shiohara, and A.B. Sawaoka, Physica C 292, 264 (1997).

    Article  CAS  Google Scholar 

  8. B.F. Belt, J. Ings, and G. Diercks, Appl. Phys. Lett. 56, 1805 (1990).

    Article  CAS  Google Scholar 

  9. C. Dubs, K. Fisher, and P. Gornert, J. Cryst. Growth 123, 611 (1992).

    Article  CAS  Google Scholar 

  10. C. Klemenz and H.J. Scheel, J. Cryst. Growth 129, 421 (1993).

    Article  CAS  Google Scholar 

  11. K. Kakimoto, Y. Ishida, T. Kimura, and Y. Shiohara, Adv. Super-cond. 10, 1037 (1998).

    Google Scholar 

  12. J. Kawashima, Y. Yamada, and I. Hirabayashi, Physica C 306, 114 (1998).

    Article  CAS  Google Scholar 

  13. H. Zama, M. Miyakoshi, H. Yamamoto, and T. Morishima, Jpn. J. Appl. Phys. 38, L1225 (1999).

    Article  Google Scholar 

  14. K. Kakimoto, Y. Sugawara, T. Izimi, and Y. Shiohara, Physica C 334, 249 (2000).

    Article  CAS  Google Scholar 

  15. K. Nomura, S. Hoshi, Y. Nakamura, T. Izumi, and Y. Shiohara, J. Mater. Res. 16, (2001, in press).

  16. T. Izumi, K. Kakimoto, K. Nomura, and Y. Shiohara, J. Cryst. Growth 219, 228 (2000).

    Article  CAS  Google Scholar 

  17. K. Nomura, S. Hoshi, X. Yao, K. Kakimoto, Y. Nakamura, T. Izumi, and Y. Shiohara, J. Mater. Res. 16, 979 (2001).

    Article  CAS  Google Scholar 

  18. X. Yao, T. Izumi, Y. Nakamura, T. Izumi, and Y. Shiohara, J. Cryst. Growth 229, 374 (2001).

    Article  CAS  Google Scholar 

  19. X. Yao, T. Izumi, N. Hobara, Y. Nakamura, T. Izumi, and Y. Shiohara, Jpn. J. Appl. Phys. Lett. 40(3B), 266 (2001).

    Article  Google Scholar 

  20. T. Izumi, X. Yao, K. Nomura, K. Kakimoto, M. Egami, A. Hayashi, and Y. Shiohara, Physica C 337, 7 (2000).

    Article  CAS  Google Scholar 

  21. Z.R. Zytkiewicz, Cryst. Res. Technol. 34, 573 (1999).

    Article  CAS  Google Scholar 

  22. Ch. Krauns, M. Sumida, M. Tagami, Y. Yamada, and Y. Shiohara, Z. Phys. B 96, 207 (1994).

    Article  CAS  Google Scholar 

  23. E. Goodilin, M. Kambara, T. Umeda, and Y. Shiohara, Physica C 289, 37 (1997).

    Article  CAS  Google Scholar 

  24. K. Nomura, S. Hoshi, E.A. Goodilin, X. Yao, T. Izumi, and Y. Shiohara, in Advances in Superconductivity XI, edited by N. Koshizuka and S. Tajima (Springer-Verlag, Tokyo, Japan, 1999), p. 753.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. X. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, D.X., Yao, X., Nomura, K. et al. Mechanism of liquid-phase epitaxy growth of NdBa2Cu3O7−xfilm from low-peritectic-temperature YBa2Cu3O7−xseed film. Journal of Materials Research 17, 747–754 (2002). https://doi.org/10.1557/JMR.2002.0109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0109

Navigation