Skip to main content
Log in

Synthesis of Superhard and Elastic Carbon Nitride Films by Filtered Cathodic Vacuum arc Combined with Radio Frequency Ion Beam Source

  • Rapid Communications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Superhard and elastic carbon nitride films with hardness and elastic recovery of 47 GPa and 87.5%, respectively, were synthesized by using a double-bend filtered cathodic vacuum arc combined with radio-frequency nitrogen ion beam source. The bombardment of energetic nitrogen atom onto the growing film surface results in the high atomic ratio of N/C (0.4), which contributes to the high sp2 content and the formation of a five-membered ring structure in the carbon nitride film at room temperature. The buckling of the five-membered ring basal planes may facilitate cross-linking between the planes through sp3 coordinated carbon atoms. A rigid three-dimensional network is formed, which contributes to the high hardness and elastic recovery of the deposited films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Liu and M.L. Cohen, Science 245, 841 (1989).

    Article  CAS  Google Scholar 

  2. Y. Liu and M.L. Cohen, Phys. Rev. B 41, 10727 (1990).

    Article  CAS  Google Scholar 

  3. H. Sjostrom, L. Hultman, and J-E. Sundgen, J. Vac. Sci. Technol. A 14, 56 (1996).

    Article  Google Scholar 

  4. H. Sjostrom, S. Stafstrom, M. Boman, and J-E. Sundgen, Phys. Rev. Lett. 75, 1336 (1995).

    Article  CAS  Google Scholar 

  5. E. Broitman, W.T. Zheng, and H. Sjostrom, Appl. Phys. Lett. 72, 2532 (1998).

    Article  CAS  Google Scholar 

  6. Y.M. Ng, C.W. Ong, X.A. Zhao, and C.L. Choy, J. Vac. Sci. Technol. A 17, 584 (1999).

    Article  CAS  Google Scholar 

  7. F-R. Weber and H. Oechsner, Surf. Coat. Technol. 74/75, 704 (1995).

    Article  Google Scholar 

  8. A. Wei, D. Chen, and N. Ke, Thin Solid Films 323, 217 (1998).

    Article  CAS  Google Scholar 

  9. C. Niu, Y.Z. Lu, and C.M. Lieber, Science 261, 334 (1993).

    Article  CAS  Google Scholar 

  10. D.H. Lee, B. Park, D.B. Plker, L. Riester, Z.C. Feng, and J.E.E. Baglin, J. Appl. Phys. 80, 1480 (1996).

    Article  CAS  Google Scholar 

  11. R. Gago, I. Jimenez, J.M. Albella, and A. Climent-Font, J. Appl. Phys. 87, 8174 (2000).

    Article  CAS  Google Scholar 

  12. B.K. Tay, X. Shi, H.S. Yang, H.S. Tan, D. Chua, and S.Y. Teo, Surf. Coat. Technol. 111, 229 (1999).

    Article  CAS  Google Scholar 

  13. W.C. Oliver and G.M. Pharr, J. Mater. Res. 17, 1564 (1992).

    Article  Google Scholar 

  14. Y.H. Cheng, B.K. Tay, S.P. Lau, and X. Shi, Diamond Relat. Mater. 10, 2137 (2001).

    Article  CAS  Google Scholar 

  15. Y.H. Cheng, B.K. Tay, S.P. Lau, and X. Shi, Thin Solid Films, 379, 76 (2000).

    Article  CAS  Google Scholar 

  16. K.W.R. Gilkes, S. Prawer, K.W. Nugent, J. Robertson, H.S.A. Sands, Y. Lifshitz, and X. Shi, J. Appl. Phys. 87, 7283 (2000).

    Article  CAS  Google Scholar 

  17. T.E. Doyle and J.R. Dennison, Phys. Rev. B 51, 196 (1995).

    Article  CAS  Google Scholar 

  18. M.P. Siegal, D.R. Tallant, P.N. Provencio, D.L. Overmyer, and R.L. Simpson, Appl. Phys. Lett. 76, 3052 (2000).

    Article  CAS  Google Scholar 

  19. P.N. Wang, Z. Guo, and X-T. Ying, Phys. Rev. B 20, 13347 (1999).

    Article  Google Scholar 

  20. V.I. Merkulov, J.S. Lannin, and C.H. Munro, Phys. Rev. Lett. 78, 4869 (1997).

    Article  CAS  Google Scholar 

  21. S. Xu, D. Flynn, and B.K. Tay, Philos. Mag. B 76, 351 (1997).

    Article  CAS  Google Scholar 

  22. B.C. Holloway, O. Kraft, D.K. Shuh, M.A. Kelly, W.D. Nix, P. Pianetta, and S. Hagstrom, Appl. Phys. Lett. 74, 3290 (1999).

    Article  CAS  Google Scholar 

  23. K. Siegbahn, C. Nordling, A. Fahlman, H. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S-E. Karlsson, J. Lindgren, and B. Lindberg, ESCA: Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy (Alm-quist & Wiksells Boktryckeri AB, Uppsala, Sweden, 1967).

    Google Scholar 

  24. S. Iijima, Nature (London) 354, 56 (1991).

    Article  CAS  Google Scholar 

  25. G.A.J. Amaratunga, M. Chhowalla, C.J. Kiely, I. Alexandrou, R. Aaharonov, and R.L.M. Devenish, Nature 383, 321 (1996).

    Article  CAS  Google Scholar 

  26. N. Hellgren, M.P. Johansson, E. Broitman, L. Hultman, and J-E. Sundgren, Phys. Rev. B 59, 5162 (1999).

    Article  CAS  Google Scholar 

  27. J. Hu, P. Yang, and C.M. Lieber, Phys. Rev. B 57, R3185 (1998).

    Article  CAS  Google Scholar 

  28. Y. Lifshitz, Diamond Relat. Mater. 5, 388 (1996).

    Article  CAS  Google Scholar 

  29. M.C. dos Santos and F. Alvarez, Phys. Rev. B 58, 13918 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Y.H., Tay, B.K., Lau, S.P. et al. Synthesis of Superhard and Elastic Carbon Nitride Films by Filtered Cathodic Vacuum arc Combined with Radio Frequency Ion Beam Source. Journal of Materials Research 17, 521–524 (2002). https://doi.org/10.1557/JMR.2002.0072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0072

Navigation