Skip to main content
Log in

Atomic-scale simulations of multiple ion–solid interactions and structural evolution in silicon carbide

  • Rapid Communications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) were employed in atomic-level simulations of fundamental damage production processes due to multiple ion–solid collision events in cubic SiC. Isolated collision cascades produce single interstitials, vacancies, antisite defects, and small defect clusters. As the number of cascades (or equivalent dose) increases, the concentration of defects increases, and the collision cascades begin to overlap. The coalescence of defects and clusters with increasing dose is an important mechanism leading to amorphization in SiC and is consistent with the homogeneous amorphization process observed experimentally in SiC. The driving force for the crystalline– amorphous (c–a) transition is the accumulation of both interstitials and antisite defects. High-resolution transmission electron microscopy (HRTEM) images of the defect accumulation process and loss of long-range order in the MD simulation cell are consistent with experimental HRTEM images and disorder measurements. Thus, the MD simulations provide atomic-level insights into the interpretation of experimentally observed features associated with multiple ion–solid collision events in SiC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.J. Weber, R.C. Ewing, C.R.A. Catlow, T. Diaz de la Rubia, L.W. Hobbs, C. Kinoshita, Aj. Matzke, A.T. Motta, M. Nastasi, E.K.H. Salje, E.R. Vance, and S.J. Zinkle, J. Mater. Res. 13, 1434 (1998).

    Article  CAS  Google Scholar 

  2. E. Wendler, A. Heft, W. Wesch, Nucl. Instrum. Methods B 141, 105 (1998).

    Article  CAS  Google Scholar 

  3. W.J. Weber, N. Yu, L.M. Wang, and N.J. Hess, Mater. Sci. Eng. A 253, 62 (1998).

    Article  CAS  Google Scholar 

  4. S.J. Zinkle and L.L. Snead, Nucl. Instrum. Methods B 116, 92 (1996).

    Article  Google Scholar 

  5. W.J. Weber, N. Yu, and L.M. Wang, J. Nucl. Mater. 253, 53 (1998).

    Article  CAS  Google Scholar 

  6. H. Inui, H. Mori, and H. Fujita, Philos. Mag. B 61, 107 (1990).

    Article  CAS  Google Scholar 

  7. H. Inui, H. Mori, and T. Sakata, Philos. Mag. B 66, 737 (1992).

    Article  CAS  Google Scholar 

  8. L.M. Wang, Nucl. Instrum. Methods B 141, 312 (1998).

    Article  CAS  Google Scholar 

  9. L.M. Wang and W.J. Weber, Philos. Mag. A 79, 237 (1999).

    Article  CAS  Google Scholar 

  10. W.J. Weber, Nucl. Instrum. Methods B 166–167, 98 (2000).

    Article  CAS  Google Scholar 

  11. R. Devanathan, W.J. Weber, and F. Gao, J. Appl. Phys. 90, 2303 (2001).

    Article  Google Scholar 

  12. R. Devanathan, W.J. Weber, and T. Diaz de la Rubia, Nucl. Instrum. Methods B 141, 118 (1998).

    Article  CAS  Google Scholar 

  13. F. Gao, E.J. Bylaska, W.J. Weber, and L.R. Corrales, Nucl. Instrum. Methods B 180, 286 (2001).

    Article  CAS  Google Scholar 

  14. R. Devanathan and W.J. Weber, J. Nucl. Mater. 278, 258 (2000).

    Article  CAS  Google Scholar 

  15. F. Gao and W.J. Weber, J. Appl. Phys. 89, 4275 (2001).

    Article  CAS  Google Scholar 

  16. F. Gao, W.J. Weber, and W. Jiang, Phys. Rev. B 63, 214106 (2001).

    Article  CAS  Google Scholar 

  17. W.J. Weber and L.M. Wang, Nucl. Instrum. Methods B 106, 298 (1995).

    Article  Google Scholar 

  18. W. Bolse, Nucl. Instrum. Methods B 141, 133 (1998).

    Article  CAS  Google Scholar 

  19. L.W. Hobbs, A.N. Sreeram, C.E. Jesurum, and B.A. Berger, Nucl. Instrum. Methods B 116, 18 (1996).

    Article  CAS  Google Scholar 

  20. R. Kilaas, NCEM HRTEM Image Simulation Software, National Center for Electron Microscopy, Lawrence Berkeley Laboratory, Berkley, CA.

    Article  CAS  Google Scholar 

  21. L. Melerba and J.M. Perlado, J. Nucl Mater. 289, 57 (2001).

  22. E. Bradley, J. Bath, G. Whitten, and S. Chada, Advanced Packaging, February, 34 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, F., Weber, W.J. Atomic-scale simulations of multiple ion–solid interactions and structural evolution in silicon carbide. Journal of Materials Research 17, 259–262 (2002). https://doi.org/10.1557/JMR.2002.0035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0035

Navigation