Skip to main content
Log in

Numerical Analyses of Fluid Dynamics of an Atomization Configuration

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Computational fluid dynamic techniques were used to analyze the gas flow behavior of a typical atomization configuration. The calculated results are summarized as follows. The atomization gas flow at the atomizer’s exit may be either subsonic at ambient pressure or sonic at an underexpanded condition, depending on the magnitude of the inlet gas pressure. When the atomization gas separates to become a free annular gas jet, a closed recirculating vortex region is formed between the liquid delivery tube and the annular jet’s inner boundary. Upon entering the atomization chamber, an underexpanded sonic gas flow is further accelerated to supersonic velocity during expansion. This pressure adjustment establishes itself in repetitive expansion and compression waves. A certain protrusion of the liquid delivery tube is crucial to obtain a stable subatmospheric pressure region at its exit. The vortex flow under the liquid delivery tube tends to transport liquid metal to the high kinetic energy gas located outside the liquid delivery tube, thereby leading to an efficient atomization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Lawley, Atomization (Metal Powder Industries Federation, Princeton, NJ, 1992).

    Google Scholar 

  • J.K. Beddow, The Production of Metal Powders by Atomization (Heyden & Son, London: Philadelphia, 1978).

    Google Scholar 

  • J.D. Ayers and I.E. Anderson, U.S. Patent No. 4 619 845 (22 February 1985).

    Google Scholar 

  • J.D. Ayers and I.E. Anderson, J. Metals 37(8), 16 (1985).

  • I.E. Anderson, M.G. Osborne, and T.W. Ellis, JOM 49(3), 38 (1996).

    CAS  Google Scholar 

  • I.E. Anderson, J. Ting, V.K. Pecharsky, C. Witham, and R.C. Bowman, in Advances in Powder Metallurgy and Particulate Materials (Chicago, Ill.), edited by R.A. Mckotch and R. Webb, (Metal Powder Industries Federation, 1997), Vol. 1, p. 5–31.

    Article  Google Scholar 

  • E.J. Lavernia and Y. Wu, Spray Atomization and Deposition (John Wiley & Sons, New York, 1996).

    Google Scholar 

  • A. Ünal, Metall. Trans. B. 20B, 613 (1989).

    Google Scholar 

  • A. Ünal, Mater. Sci. Technol. 3, 1029 (1987).

    Article  Google Scholar 

  • A. Ünal, Metall. Trans. B. 20B, 833 (1989).

    Article  Google Scholar 

  • J. Liu, L. Arnberg, N. Bäckström, H. Klang, and S. Savage, Mater. Sci. Eng. 98, 43 (1988).

    Article  Google Scholar 

  • J.C. Baram, M.K. Veistinen, E.J. Lavernia, M. Abinante, and N.J. Grant, J. Mater. Sci. 23, 2457 (1988).

    Article  CAS  Google Scholar 

  • I.E. Anderson, R.S. Figliola, and H. Morton, Mater. Sci. Eng. A 148, 101 (1991).

    Article  CAS  Google Scholar 

  • M.K. Veistinen, E.J. Lavernia, M. Abinante, and N.J. Grant, Mater. Lett. 5, 373 (1987).

    Article  Google Scholar 

  • S.A. Miller, R.S. Miller, D.P. Mourer, and R.W. Christensen, Int. J. Powder Metall. 33(7), 37 (1997).

    Article  Google Scholar 

  • U. Fritsching, V. Uhlenwinkel, and K. Bauckhage, Phoenics J. Computational Fluid Dynamics Appl. 5(1), 81 (1992).

    CAS  Google Scholar 

  • P.I. Espina, in Sprayforming, edited by K. Bauckhage and V. Uhlenwinkel, (University of Bremen, Bremen, Germany, 1999), p. 127.

    Google Scholar 

  • H. Liu and F.R. Dax, in Advances in Powder Metallurgy and Particulate Materials (Chicago, Ill.), edited by R.A. Mckotch and R. Webb, (Metal Powder Industries Federation, Princeton, NJ, 1997), Vol. 1, p. 3–5.

    Google Scholar 

  • J. Mi, R.S. Figliola, and I.E. Anderson, Metall. Mater. Trans. B. 28B, 935 (1997).

    Google Scholar 

  • M.W. Peretti, J.J. Conway, W.B. Eisen, and R.A. Longo, in Advances in Powder Metallurgy and Particulate Materials (Vancouver, B.C.), edited by C.L. Rose and M.H. Thibodeau, (Metal Powder Industries Federation, Princeton, NJ, 1999), Vol. 1, p. 1–13.

    Article  Google Scholar 

  • B.E. Launder and D.B. Spalding, Computational Methods Applied Mechanical Engineering (Academic Press, London: New York, 1974), Vol. 3, p. 269.

    Google Scholar 

  • Theory Manual of CFD-ACE+ (CFD Research Corp., Huntsville, Alabama, 1998), Vol. 5, P. 5–8.

    Google Scholar 

  • F.M. White, Fluid Mechanics (McGraw-Hill, 1979).

  • P.A. Thompson, Compressible-Fluid Dynamics (McGraw-Hill, New York, 1971).

    Google Scholar 

  • C.A.J. Fletcher, Computational Techniques for Fluid Dynamics 2, (Springer-Verlag, Berlin, Germany, 1988).

    Google Scholar 

  • J. Mi, J. Ting, R. Terpstra, I.E. Anderson, C-P. Mao, and R.S. Figliola, in Advances in Powder Metallurgy and Particulate Materials (Chicago, Ill.), edited by R.A. Mckotch and R. Webb (Metal Powder Industries Federation, 1997), Vol. 1, p. 5–13.

    Book  Google Scholar 

  • J. Ting, J. Mi, I.E. Anderson, and R. Terpstra, in Advances in Powder Metallurgy and Particulate Materials (Chicago, Ill.), edited by R.A. Mckotch and R. Webb, (Metal Powder Industries Federation, Princeton, NJ, 1997), Vol. 1, p. 5–53.

    Google Scholar 

  • C-K. Hu, R. Rosenberg, and K.N. Tu, in Stress-Induced Phenomena in Metallization, Proc. 2nd Int. Workshop, edited by P. Ho, C.Y. Li, and P. Totta (Am. Inst. Phys., New York, 1994), p. 195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Q., Cheng, D., Trapaga, G. et al. Numerical Analyses of Fluid Dynamics of an Atomization Configuration. Journal of Materials Research 17, 156–166 (2002). https://doi.org/10.1557/JMR.2002.0024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0024

Navigation