Skip to main content
Log in

Fretting wear rate of sulphur deficient MoSx coatings based on dissipated energy

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The fretting wear of sulphur-deficient MoSx coatings with different crystallographic orientations has been investigated in ambient air of controlled relative humidity. The coefficient of friction and the wear rate of MoSx coatings sliding against corundum depend not only on fretting parameters like contact stress, fretting frequency, and relative humidity, but also strongly on the crystallographic orientation of the coatings. For randomly oriented MoSx coatings, the coefficient of friction and the wear rate increased significantly with increasing relative humidity. In contrast, basal-oriented MoSx coatings were less sensitive to relative humidity. The coefficient of friction of both types of MoSx coatings decreased on sliding against corundum with increasing contact stress and decreasing fretting frequency. A correlation between dissipated energy and wear volume is proposed. This approach allows detection in a simple way of differences in fretting wear resistance between random- and basal-oriented MoSx coatings tested in ambient air of different relative humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Pope and J.K.G. Panitz, Surf. Coat. Technol. 36, 341 (1988).

    Google Scholar 

  2. J.Ph. Nabot, A. Aubert, R. Gillet, and Ph. Renaux, Surf. Coat. Technol. 43/44, 629 (1990).

    Article  CAS  Google Scholar 

  3. B.C. Stupp, Thin Solid Films 84, 257 (1981).

    Article  Google Scholar 

  4. T. Spalvins, Thin solid Films 118, 375 (1984).

    Article  CAS  Google Scholar 

  5. N.M. Renevier, V.C. Fox, D.G. Teer, and J. Hampshire, Surf. Coat. Technol. 127, 24 (2000).

    Article  CAS  Google Scholar 

  6. M.R. Hilton, R. Bauser, S.V. Didziulis, M.T. Dugger, J.M. Keem, and J. Scholhamer, Surf. Coat. Technol. 53, 13 (1992).

    Article  CAS  Google Scholar 

  7. K. Kobs, H. Dimigen, H. Hubsch, H.J. Tolle, R. Leutenecker, and H. Ryssel, Mater. Sci. Eng. 90, 281 (1987).

    Article  CAS  Google Scholar 

  8. T.R. Jervis, J-P. Hirvonen, and M. Nastasi, J. Mater. Res. 6, 1350 (1991).

    Article  CAS  Google Scholar 

  9. G. Weise, A. Teresiak, I. Bacher, P. Markschlager, and G. Kampschulte, Surf. Coat. Technol . 76–77, 382 (1995).

    Article  CAS  Google Scholar 

  10. D-Y. Wang, C-L. Chang, Z-Y. Chen, and W-Y. Ho, Surf. Coat. Technol. 120–121, 629 (1999).

    Article  Google Scholar 

  11. M.C. Simmonds, A. Simmonds, H. Van Swyenhoven, E. Pfluger, and S. Mikhailov, Surf. Coat. Technol. 108–109, 340 (1998).

    Article  Google Scholar 

  12. R. Gilmore, M.A. Baker, P.N. Gibson, X. Gissler, M. Stoiber, P. Losbichler, and C. Mitterer, Surf. Coat. Technol. 108–109, 345 (1998).

    Article  Google Scholar 

  13. J. Rechberger and P. Brunner, Surf. Coat. Technol. 62, 393 (1993).

    Article  Google Scholar 

  14. K.J. Wahl, M. Belin, and I.L. Singer, Wear 214, 212 (1998).

    Article  CAS  Google Scholar 

  15. J.P. Celis, L. Stals, E. Vancoille, and H. Mohrbacher, Surf. Eng. 14, 205 (1998).

    Article  CAS  Google Scholar 

  16. H. Mohrbacher, B. Blanpain, J-P. Celis, and J.R. Roos, Wear 180, 43 (1995).

    Article  CAS  Google Scholar 

  17. X.L. Zhang, R. Vitchev, W. Lauwerens, L. Stals, J.W. He, and J-P. Celis, Thin Solid Films 396, 69 (2001).

    Article  CAS  Google Scholar 

  18. I.L. Singer, R.N. Bolster, J. Wegand, S. Fayeulle, and B.C. Stupp, Appl. Phys. Lett. 57, 995 (1990).

    Article  CAS  Google Scholar 

  19. J.L. Grosseau-Poussard, P. Moine, and M. Brendle, Thin Solid Films 307, 163 (1997).

    Article  CAS  Google Scholar 

  20. J.K. Lancaster, ASLE Trans. 18, 187 (1975).

    Article  CAS  Google Scholar 

  21. E.W. Roberts, Thin Solid Films 181, 461 (1989).

    Article  CAS  Google Scholar 

  22. D. Zhuang and J. Liu, Tribology 15, 341 (1995).

    Article  CAS  Google Scholar 

  23. H.F. Barry and J.P. Binkelman, Lubric. Eng. 22, 139 (1966).

    CAS  Google Scholar 

  24. M.Z. Huq and J.P. Celis, Wear 225–229, 53 (1999).

    CAS  Google Scholar 

  25. G. Xu, Z. Zhou, J. Liu, and X. Ma, Wear 225–259, 46 (1999).

    Article  Google Scholar 

  26. C. Muller, C. Menoud, M. Maillat, and H.E. Hintermann, Surf. Coat. Technol. 36, 351 (1988).

    Article  Google Scholar 

  27. M.R. Hilton, R. Bauer, and P.D. Fleischauer, Thin Solid Films 188, 219 (1990).

    Article  Google Scholar 

  28. R.I. Christy and H.R. Ludwig, Thin Solid Films 64, 223 (1979).

    Article  CAS  Google Scholar 

  29. T. Spalvins, Thin Solid Films 90, 17 (1982).

    Article  CAS  Google Scholar 

  30. I.L. Singer, S. Fayeulle, and P.D. Ehni, Wear 195, 7 (1996).

    Article  Google Scholar 

  31. S.W. Wiederhorn, J. Am. Ceram. Soc. 50, 407 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Lauwerens, W., Stals, L. et al. Fretting wear rate of sulphur deficient MoSx coatings based on dissipated energy. Journal of Materials Research 16, 3567–3574 (2001). https://doi.org/10.1557/JMR.2001.0489

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0489

Navigation