Skip to main content
Log in

Adhesion of polymer–inorganic interfaces by nanoindentation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanoindentation combined with atomic force microscopy was applied to measure the fracture toughness of polystyrene/glass interfaces. Film delamination occurs when the inelastic penetration depth approximately equals or exceeds the film thickness. The delamination size was accurately measured using atomic force microscopy. Using multilayer indentation and annular-plate analyses, the interfacial fracture toughness was then assessed. The values obtained from the two analyses are in good agreement with the fracture toughness of the interface being approximately 350 mJ/m2. By appropriate fracture surface characterization, it was shown that fracture occurs along the polystyrene/glass interface. Crack arrest marks were observed, and their possible cause discussed. On the basis of the morphology of the fracture surface, the fracture toughness was also evaluated using a process zone analysis. The result agrees well with those obtained from the other two analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Liou, P. S. Ho, and A. McKerrow, “The Thermal and Mechanical Properties of Perfluorocyclobutate Aromatic Ether Polymers,” in Dielectric Material Integration for Microelectronics, edited by W. D. Brown, S. S. Ang, M. Loboda, B. Sammakia, R. Singh, and H.S. Rathore (The Electrochemical Society, Inc., Pennington, NJ, 1998), p. 113.

    Article  CAS  Google Scholar 

  2. M. Ree, Y. H. Park, T. J. Shin, T. L. Nunes, and W. Volksen, Polymer 41, 2105 (2000).

    Google Scholar 

  3. R. R. Tummala, E. J. Rymaszewski, and A.G. Klopfenstein Microelectronics Packaging Handbook, edited by R. R. Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, (Chapman & Hall, New York, 1997).

    Article  CAS  Google Scholar 

  4. M. Ree, W. H. Goh, J-W. Park, M-H. Lee, and S. B. Rhee, in Low-Dielectric Constant Materials—Synthesis and Applications in Microelectronics, edited by T-M. Lu, S. P. Murarka, T. K. Kuan, and C.H Ting (Mater. Res. Soc. Symp. 381, Pittsburgh, PA, 1995), p. 71

    Book  Google Scholar 

  5. Z. Chen, B. Cotterell, and W. T. Chen, Surf. Interface Anal. 28, 146 (1999).

    Google Scholar 

  6. D.B. Marshall and A. G. Evans, J. Appl. Phys. 56, 2632 (1984).

    Article  CAS  Google Scholar 

  7. M. J. Matthewson, Appl. Phys. Lett. 49, 1426 (1986).

    Article  CAS  Google Scholar 

  8. L. G. Rosenfeld, J. E. Ritter, T. J. Lardner, and M. R. Lin, J. Appl. Phys. 67, 3291 (1990).

    Article  CAS  Google Scholar 

  9. M. D. Kriese, N. R. Moody, and W. W. Gerberich, J. Mater. Res. 14, 3007 (1999).

    Article  Google Scholar 

  10. J.G. Swadener and K. M. Liechti, J. Appl. Mech. 65, 25 (1998).

    Article  CAS  Google Scholar 

  11. R. Sharma, J. Lin, and J. Drye, J. Adhes. 40, 257 (1993).

    Article  Google Scholar 

  12. C. Dai, E. J. Kramer, J. Washiyama, and C. Hui, Macromolecules 29, 7536 (1996).

    Article  CAS  Google Scholar 

  13. M. D. Thouless, Acta Metall. 36, 3131 (1988).

    CAS  Google Scholar 

  14. N. I. Tymiak, M. Li, A. A. Volinsky, Y. Katz, and W. W. Gerberich, in Materials Reliability in Microelectronics IX, edited by C. A. Volkert, A. H. Verbruggen, and D.D. Brown (Mater. Res. Soc. Symp. Proc. 563, Warrendale, PA, 1999), p. 269.

    Article  CAS  Google Scholar 

  15. M.R. Turner and A. G. Evans, Acta Mater. 44, 863 (1996).

    Google Scholar 

  16. M. D. Kriese, N. R. Moody, and W. W. Gerberich, J. Mater. Res. 14, 3019 (1999).

    Article  CAS  Google Scholar 

  17. A. Bagchi and A. G. Evans, Thin Solid Films 286, 203 (1996).

    Article  CAS  Google Scholar 

  18. J. W. Smith, E. J. Kramer, F. Xiao, and C. Hui, J. Mater. Sci. 28, 4234 (1993).

    Article  CAS  Google Scholar 

  19. T. W. Wu, J. Mater. Res. 6, 407 (1991).

    Article  CAS  Google Scholar 

  20. B. Bhushan, A. V. Kulkarni, W. Bonin, and J. T. Wyrobek, Philos. Mag. A 74, 1117 (1996).

    Article  Google Scholar 

  21. W.C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  22. W. W. Gerberich, W. Yu, D. Kramer, A. Strojny, D. Bahr, E. Lilleodden, and J. Nelson, J. Mater. Res. 13, 421 (1998).

    Article  CAS  Google Scholar 

  23. M. Li, C. B. Carter, and W. W. Gerberich, (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), p. Q7.21.1.

    Article  CAS  Google Scholar 

  24. J.W. Hutchinson and Z. Suo, Mixed Mode Cracking in Layered Materials, edited by J.W. Hutchinson and T. Y. Hu, (Academic Press, New York), Adv. Appl. Mech. 29, 63 (1991).

  25. W. R. Hoffman, The Mechanical Properties of Thin Condensed Films, in Physics of Thin Films, edited by G. Hass and R.E. Thun (Academic, New York, 1966), Vol. 3, p. 211.

    Google Scholar 

  26. W. D. Callister, Jr., Materials Science and Engineering an Introduction (John Wiley & Sons, New York, 1999).

    Google Scholar 

  27. J. Brandrup and E.H. Immergut Polymer Handbook, edited by J. Brandrup and E. H. Immergut, (Wiley-Interscience, New York, 1989).

    Google Scholar 

  28. D. M. Marsh, Proc. R. Soc. A 279, 420 (1963).

    Google Scholar 

  29. J. B. Pethica, R. Hutchings, and W. C. Oliver, Philos. Mag. A 48, 593 (1983).

    Google Scholar 

  30. Q. Ma and D. R. Clarke, J. Mater. Res. 1C, 853 (1995).

    Article  CAS  Google Scholar 

  31. N. Tymiak and W. Gerberich, Adhesion and Interfacial Degradation, in ASM Handbook Volume 8 Mechanical Testing and Evaluation, edited by H. Kuhn and D. Medlin (ASM International, Materials Park, OH, 2000), p. 298.

    Article  Google Scholar 

  32. J. G. Swadener, K. M. Liechti, and A.L.d. Lozanne, J. Mech. Phys. Solids 47, 223 (1999).

    Google Scholar 

  33. A. Dupre, Mechanical Theory of Heat (Gauthier-Villars, Paris, France, 1869).

    Article  CAS  Google Scholar 

  34. G. Reiter, Langmuir 9, 1344 (1993).

    Google Scholar 

  35. A.A. Volinsky and W. W. Gerberich, in Materials Reliability in Microelectronics IX, edited by C. A. Volkert, A. H. Verbruggen, and D.D. Brown (Mater. Res. Soc. Symp. Proc. 563, Warrendale, PA, 1999), p. 275.

    Article  CAS  Google Scholar 

  36. A. A. Volinsky, The Role of Geometry and Plasticity in Thin Ductile Film Adhesion, Ph. D. Thesis, University of Minnesota (2000).

    Google Scholar 

  37. A. S. Argon, J. G. Hannoosh, and M. M. Salama, Initiation and Growth of Crazes in Glassy Polymers, in Fracture 1977 Advances in Research on the Strength and Fracture of Materials Vol. 1, edited by D.M.R. Taplin (Pergamon Press Inc., New York, 1978), p. 445.

  38. S. J. Israel, C. S. Kantamneni, and W. W. Gerberich, A Dugdale-Barenblatt Equilibrium Model for Crazes in Glassy Polymers, in Mechanical Behavior of Materials, edited by K.J. Miller and R.F. Smith (Pergamon Press, New York, 1979), Vol. V3, p. 393.

    Google Scholar 

  39. W. W. Gerberich, Interaction of Microstructure and Mechanism in Defining KIc, KIscc or △Kth Values, in Fracture: Interactions of Microstructure, Mechanisms and Mechanics, edited by J.M. Wells and J.D. Landes (Metallurgical Society of AIME, Warrendale, PA, 1984), p. 49.

    Google Scholar 

  40. W. W. Gerberich, Int. J. Fract. 13, 535 (1977).

    Google Scholar 

  41. D. S. Dugdale, J. Mech. Phys. Solids 8, 100 (1960).

    Google Scholar 

  42. G. I. Barenblatt, Adv. Appl. Mech. 7, 55 (1962).

    Article  Google Scholar 

  43. I. M. Ward, Mechanical Properties of Solid Polymers, 2nd ed. (John Wiley & Sons, Chichester, United Kingdom, 1983).

    Article  Google Scholar 

  44. L.E. Nielsen and R. F. Landel, Mechanical Properties of Polymers and Composites (Marcel Dekker, Inc., New York, 1994).

    Google Scholar 

  45. G.B. Jackson and R. L. Ballman, SPE J. 16, 1147 (1960).

    Google Scholar 

  46. Z. Suo and J. W. Hutchinson, Int. J. Fract. 43, 1 (1990).

    CAS  Google Scholar 

  47. A. G. Evans, B. J. Dalgleish, M. He, and J. W. Hutchinson, Acta Metall. 37, 3249 (1989).

    Article  Google Scholar 

  48. K.M. Liechti and Y-S. Chai, J. Appl. Mech. 58, 680 (1991).

    Article  CAS  Google Scholar 

  49. A. Strojny, N. R. Moody, J. A. Emerson, W. R. Even Jr, and W. W. Gerberich, in Interfaces, Adhesion and Processing in Polymer Systems, edited by S. H. Anastasiadis, A. Karim, and G.S. Ferguson (Mater. Res. Soc. Symp. Proc. 629, Warrendale, PA, 2000), p. FF5.13.1.

    Article  Google Scholar 

  50. M.R. Begley and J. W. Hutchinson, J. Mech. Phys. Solids 46, 2049 (1998).

    Google Scholar 

  51. J. C. Grunlan, X. Xia, D. Rowenhorst, and W. W. Gerberich, Rev. Sci. Instrum. (in press).

    Article  CAS  Google Scholar 

  52. A. Inoue, T. Zhang, and T. Masumoto, Mater. Trans. JIM. 31, 177 (1990).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William W. Gerberich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Carter, C.B., Hillmyer, M.A. et al. Adhesion of polymer–inorganic interfaces by nanoindentation. Journal of Materials Research 16, 3378–3388 (2001). https://doi.org/10.1557/JMR.2001.0466

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0466

Navigation