Skip to main content
Log in

Space-charge concepts on grain boundary impedance of a high-purity yttria-stabilized tetragonal zirconia polycrystal

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A detailed impedance analysis using the brick-layer model is performed on a high-purity yttria-stabilized tetragonal zirconia polycrystal (Y-TZP). Space-charge impedance is generally formulated and expressions for the respective space-charge models are therefrom derived depending on whether dopant ions are mobile or immobile. Pronounced yttrium segregation in Y-TZP is also considered in the analysis in that the dopant profile is assumed to be frozen from a high-temperature equilibrium distribution. Comparison with experimental observations shows that the electrically measured grain-boundary thickness corresponds to the Schottky-barrier width, slightly modified by the dopant segregation. The grain-boundary resistance is not consistent with any space-charge models and the strong defect interaction due to the yttrium enrichment is suggested to be mainly responsible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See e.g., the articles in Science and Technology of Zirconia III, edited by S. Somiya, N. Yamamoto, and H. Yanagida (American Ceramic Society, Westerville, OH, 1988).

  2. N. Bonanos, R.K. Slotwinsiki, B.C.H. Steele, and E.P. Butler, J. Mater. Sci. Lett. 3, 245 (1984).

    Article  CAS  Google Scholar 

  3. W. Weppner, Solid State Ionics 52, 15 (1992).

    Article  CAS  Google Scholar 

  4. J.E. Bauerle, J. Phys. Chem. Solids, 30, 2657 (1969).

    Article  CAS  Google Scholar 

  5. M. Kleitz, L. Dessamond, and M.C. Steil, Solid State Ionics, 75, 107 (1995).

    Article  CAS  Google Scholar 

  6. J. Fleig, and J. Maier, J. Am. Ceram. Soc., 82, 3485 (1999).

    Article  CAS  Google Scholar 

  7. N. Bonanos, B.C.H. Steele, E.P. Butler, W.B. Johnson, W.L. Worrel, D.D. Macdonald, and M.C.H. McKubre, in Impedance Spectros-copy, edited by J.R. Macdonald (John Wiley, New York, 1987), p. 191.

  8. M. Kleitz, H. Bernard, E. Fernandez, and E. Schouler, in Science and Technology of Zirconia, edited by A.H. Heuer and L.W. Hobbs (American Ceramic Society, Columbus, OH, 1981), p. 310.

  9. J.F. Baumard, P. Papet, and P. Abélard, in Science and Technology of Zirconia III, edited by S. Sõmiya, N. Yamamoto, and H. Hanagida (American Ceramic Society, Westerville, OH, 1988), p. 779.

  10. M. Rühle, N. Claussen, and A.H. Heuer, in Science and Technology of Zirconia II, edited by N. Claussen, M. Rühle, and A.H. Heuer (American Ceramic Society, Columbus, OH, 1984), p. 352.

  11. M. Gödickemeier, B. Michel, A. Orliukas, P. Bohac, K. Sasaki, L. Gauckler, H. Heinrich, P. Schwander, G. Kostoraz, H. Hofmann, and O. Frei, J. Mater. Res. 9, 1228 (1994).

    Article  Google Scholar 

  12. T.G. Nieh, D.L. Yaney, and J. Wadsworth, Script. Metall. 23, 2007 (1989).

    Article  CAS  Google Scholar 

  13. S.P.S. Badwal and J. Drennan, J. Mater. Sci. 24, 88 (1989).

    Article  CAS  Google Scholar 

  14. S.P.S. Badwal, F.T. Ciacchi, and R.H.J. Hannink, Solid State Ionics, 40/41, 882 (1990).

    Article  Google Scholar 

  15. S.P.S. Badwal, Appl. Phys. A 50, 449 (1990).

    Article  Google Scholar 

  16. C.S. Chen, M.M.R. Boutz, A.J.A. Winnubst, and A.J. Burggraaf, Mater. Sci. Eng. A 168, 231 (1993).

    Article  Google Scholar 

  17. S.P.S. Badwal and J. Drennan, J. Mater. Sci. 24, 88 (1989).

    Article  CAS  Google Scholar 

  18. A.E. Hughes, in Science of Ceramic Interfaces II, edited by J. Nowotny (Elsevier Science, Amsterdam, 1994), p. 183.

  19. M.J. Verkerk, B.J. Middelhuis, and A.J. Burggraaf, Solid State Ionics, 6, 159 (1982).

    Article  CAS  Google Scholar 

  20. M. Aoki, Y-M. Chiang, I. Kosacki, L.J-R. Lee, H. Tuller, and Y. Liu, J. Am. Ceram. Soc. 79, 1169 (1996).

    Article  CAS  Google Scholar 

  21. L. Heyne, in Mass Transport in Solids, edited by F. Bénière and C.R.A. Catlow (Plenum Press, New York, 1983), p. 425.

  22. X. Guo, Solid State Ionics, 81, 235 (1995).

    Article  CAS  Google Scholar 

  23. N. Bonanos and E.P. Butler, J. Mater. Sci. 4, 561 (1985).

    CAS  Google Scholar 

  24. P. Abelard and J.F. Baumard, Phys. Rev. B 26, 1005 (1982).

    Article  CAS  Google Scholar 

  25. M.T. Lanagan, J.K. Yamamoto, A. Bhalla, and S.G. Sankar, Mater. Lett. 7, 437 (1989).

    Article  CAS  Google Scholar 

  26. Y. Chen and J.R. Sellar, Solid State Ionics, 86-88, 207 (1996).

    Article  Google Scholar 

  27. F.E.G. Henn, R.M. Buchanan, N. Jiang, and D.A. Stevenson, Appl. Phys. A, 60, 515 (1995).

    Article  Google Scholar 

  28. M. Weller, H. Schubert and P. Kountouros, in Science and Technology of Zirconia V, edited by S.P.S. Badwal, M.J. Bannister, and R.H.J. Hannink (Technomics, Lancaster, PA, 1993), p. 546.

  29. A.E. Barmi, E.J.L. Schouler, A. Hammou, and M. Kleitz, in Science and Technology of Zirconia III, edited by S. Somiya, N. Yamamoto, and H. Yanagida (American Ceramic Society, Westerville, OH, 1988), p. 885.

  30. S.P.S. Badwal, J. Mater. Sci. 19, 1767 (1984).

    Article  CAS  Google Scholar 

  31. A.S. Nowick and D.S. Park, in Superionic Conductors, edited by G. Mahan and W. Roth (Plenum Press, New York, 1976), p. 395.

  32. J.F. Baumard and P. Abelard, in Science and Technology of Zir-conia II, edited by N. Claussen, M. Rühle, and A.H. Heuer (American Ceramic Society, Columbus, OH, 1984), p. 555.

  33. S.P.S. Badwal and J. Drennan, J. Mater. Sci. 22, 3231 (1987).

    Article  CAS  Google Scholar 

  34. H.K. Heinisch, in Semiconductor Contacts: An Approach to Ideas and Models (Clarendon Press, Oxford, 1984).

    Google Scholar 

  35. D.Y. Wang and A.S. Nowick, J. Solid State Chem 35, 325 (1980).

    Article  CAS  Google Scholar 

  36. M. Vollmann and R. Waser, J. Am. Ceram. Soc. 77, 235 (1994).

    Article  Google Scholar 

  37. J. Maier, in High Temperature Electrochemistry: Ceramics and Metals, edited by F.W. Poulsen, N. Bonanos, S. Linderoth, M. Mogensen, and B. Zachau-Christiansen (Risø National Laboratory, Roskilde, Denmark, 1996), p. 67.

  38. I. Denk, J. Claus, and J. Maier, J. Electrochem. Soc. 144, 3526 (1997).

    Article  CAS  Google Scholar 

  39. K.L. Kliewer and J.S. Koehler, Phys. Rev. 140, A1226 (1965).

    Article  CAS  Google Scholar 

  40. S-L. Hwang and I.W. Chen, J. Am. Ceram. Soc. 73, 3269 (1990).

    Article  CAS  Google Scholar 

  41. G.S.A.M. Theunissen, A.J.A. Winnubst, and A.J. Burggraaf. J. Mater. Sci. 27, 5057 (1992).

    Article  CAS  Google Scholar 

  42. I-G. Lee and I-W. Chen, in Sintering ‘87, edited by S. Somiya, M. Shimada, M. Yoshimura, and R. Watanabe, (Elsevier Science, Amsterdam, 1988), p. 340.

  43. G.S.A.M. Theunissen, A.J.A. Winnubst, and A.J. Burggraaf, J. Eur. Ceram. Soc. 9, 251 (1992).

    Article  CAS  Google Scholar 

  44. X. Guo, J. Phys. Chem. Solids 60, 539 (1999).

    Article  CAS  Google Scholar 

  45. W.D. Kingery, H.K. Bowen, D.R. Uhlmann, in Introduction to Ceramics (John Wiley, New York, 1976).

    Google Scholar 

  46. A.J. Burggraaf and A.J.A. Winnubst, in Surface and Near Surface Chemistry of Oxide Materials, edited by J. Nowotny and L-C. Dufour, (Elsevier Science, Amsterdam, 1988), p. 449.

  47. J. Nowotny, M. Sloma, and W. Weppner, Solid State Ionics 28, 269 (1988).

    Google Scholar 

  48. J. Jamnik and J. Maier, Solid State Ionics 119, 191 (1999).

    Article  CAS  Google Scholar 

  49. M. Leonhardt, Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany (1999).

  50. J. Maier, Prog. Solid State Chem. 23, 171 (1995).

    Article  CAS  Google Scholar 

  51. J. Maier, Ber. Buinsenges. Phys. Chem. 90, 26 (1986).

    Article  CAS  Google Scholar 

  52. J.O’M. Bockris and A.K.N. Reddy, in Modern Electrochemistry (Plenum Press, New York, 1970).

    Book  Google Scholar 

  53. U. Martin, H. Boysen, and F. Frey, Acta Cryst. B. 49, 403 (1993).

    Article  Google Scholar 

  54. M.S. Castro, G.M. Nunez, D.E. Resasco, and D.M. Aldao, J. Am. Ceram. Soc. 75, 800 (1992).

    Article  CAS  Google Scholar 

  55. Y-M. Chiang and T. Takagi, J. Am. Ceram. Soc. 73, 3278 (1990).

    Article  CAS  Google Scholar 

  56. M.F. Yan, R.M. Cannon, and H.K. Bowen, J. Appl. Phys. 54, 779 (1983).

    Article  CAS  Google Scholar 

  57. J-H. Han and D-Y. Kim, J. Am. Ceram. Soc. 84, 539 (2001).

    Article  CAS  Google Scholar 

  58. X. Guo and J. Maier, J. Electrochem. Soc. 148, E121 (2001).

    Article  CAS  Google Scholar 

  59. K.L. Ngai, Philos. Mag. B. 77, 187 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JS., Kim, DY. Space-charge concepts on grain boundary impedance of a high-purity yttria-stabilized tetragonal zirconia polycrystal. Journal of Materials Research 16, 2739–2751 (2001). https://doi.org/10.1557/JMR.2001.0374

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0374

Navigation