Skip to main content
Log in

Impression creep of a viscous layer

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Impression creep of a flat-ended cylindrical punch pushed into a viscous layer overlaid on a rigid substrate is analyzed. The method developed here permits us to relate the impression velocity to the punching stress in terms of an auxiliary function, which represents the solution of a set of Fredholm integral equations with a continuous symmetrical kernel. By a series of numerical analysis, the influence of the boundary conditions and the effect of the thickness of the layer on the impression velocity are obtained. For infinite thickness (i.e., h/a →∞, where h is the thickness of the layer and a is the radius of the punch), the impression creep is independent of the stick or slip boundary condition at the indenter/layer interface. For finite thickness such as h/a = 20, the boundary conditions have about 5% effect on the impression velocity. For a thin film, the impressing velocity is very sensitive to the boundary conditions. In fact it suggests a possible experimental way to detect debonding at the interface between the thin film and the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.N.G. Chu and J.C.M. Li, J. Mater. Sci. 12, 2200 (1977).

    Article  CAS  Google Scholar 

  2. H.Y. Yu and J.C.M. Li, J. Mater. Sci. 12, 2214 (1977).

    Article  CAS  Google Scholar 

  3. Chiang and J.C.M. Li, Polymer 35(19), 4013 (1994).

    Google Scholar 

  4. P.J. Leider and R.B. Bird, Ind. Eng. Chem. Fundam. 13, 336, 342 (1974).

    Article  CAS  Google Scholar 

  5. R.B. Bird, P.J. Dotson, and N.L. Johnson, J. Non-Newtonian Fluid Mech. 7, 213 (1980).

    Article  CAS  Google Scholar 

  6. H.T. Pham and E.A. Meinecke, J. Appl. Polym. Sci. 53, 257 (1994).

    Article  CAS  Google Scholar 

  7. H.M. Laun and G. Hirsch, Rheol. Acta 28, 267 (1989).

    Article  CAS  Google Scholar 

  8. J. Meissner and J. Hostettler, Rheol. Acta 33, 1 (1994).

    Article  CAS  Google Scholar 

  9. Y. Mochimaru, J. Non-Newtonian Fluid Mech. 9, 157 (1981).

    Article  CAS  Google Scholar 

  10. P.O. Brum and J. Vorwerk, Rheol. Acta 32, 380 (1993).

    Article  Google Scholar 

  11. Fuqian Yang and J.C.M. Li, J. Non-Cryst. Solids 212, 126-135 (1997).

    Article  Google Scholar 

  12. H. Chen and J.C.M. Li, in Micromechanics of Advanced Materials, edited by S.N.G. Chu, P.K. Llaw, R.J. Arsenault, K. Sadananda, K.S. Chan, W.W. Gerberich, C.C. Chau, and T.M. Kung (TMS, Warrendale, PA, 1995), pp. 367-371.

  13. L.N.G. Filon, Philos. Trans. A 21, 63 (1903).

    Google Scholar 

  14. J.R. Scott, Trans. Inst. Rubber Ind. 7, 169 (1931).

    CAS  Google Scholar 

  15. S. Chatraei, C.W. Macosko, and H.H. Winter, J. Rheol. 34, 433 (1981).

    Article  Google Scholar 

  16. R.E. Johnson, J. Eng. Math. 18, 105 (1984).

    Article  Google Scholar 

  17. Brindley, Davies, and Walters, J. Non-Newtonian Fluid Mech. 1, 19 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Li, J.C.M. Impression creep of a viscous layer. Journal of Materials Research 16, 2709–2715 (2001). https://doi.org/10.1557/JMR.2001.0370

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0370

Navigation