Skip to main content
Log in

Freeform fabrication of aluminum metal-matrix composites

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A series of metal-matrix composites were formed by extrusion freeform fabrication of a sinterable aluminum alloy in combination with silicon carbide particles and whiskers, carbon fibers, alumina particles, and hollow flyash cenospheres. Silicon carbide particles were most successful in that the composites retained high density with up to 20 vol% of reinforcement and the strength approximately doubles over the strength of the metal matrix alone. Comparison with simple models suggests that this unexpectedly high degree of reinforcement can be attributed to the concentration of small silicon carbide particles around the larger metal powder. This fabrication method also allows composites to be formed with hollow spheres that cannot be formed by other powder or melt methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Calvert and R. Crockett, Chem. Mater. 9, 650 (1997).

    Article  CAS  Google Scholar 

  2. K. Stuffle, A. Mulligan, P. Calvert, and J. Lombardi, Solid Freebody Forming of Ceramics from Polymerizable Slurry, edited by H.L. Marcus, J.J. Beaman, J.W. Barlow, D.L. Bourell, and R.H. Crawford, Solid Freeform Fabrication Symposium, Austin, Texas (University of Texas, Austin, TX, 1993).

  3. R. S. Crockett, J. O’Kelly, P.D. Calvert, B.D. Fabes, K. Stuffle, P. Creegan, and R. Hoffman, Predicting and Controlling Resolution and Surface Finish of Ceramic Objects Produced by Stereo-deposition Processes, edited by H.L. Marcus, J.J. Beaman, J.W. Barlow, D.L. Bourell, and R.H. Crawford, Solid Freeform Fabrication Symposium, Austin, Texas (University of Texas, 1995).

  4. J. Lombardi, G. George, L. Rintoul, and P. Calvert, Polym. Prepr. 37, 221 (1996).

    CAS  Google Scholar 

  5. P. Calvert, G. George, and L. Rintoul, Chem. Mater. 8, 1298 (1996).

    Article  CAS  Google Scholar 

  6. J. Peng, T. Liang, and P. Calvert, Composites Part A: Applied Science and Manufacturing 30, 133 (1998).

    Article  Google Scholar 

  7. L.S. Darken and R.W. Gurry, Physical Chemistry of Metals (McGraw Hill, New York, 1953).

    Google Scholar 

  8. C. Lall, International Journal of Powder Metallurgy 27, 315 (1991).

    CAS  Google Scholar 

  9. R. Lumley, T.B. Sercombe, and G.B. Schaffer, Metall. Mater. Trans. A 30A, 457 (1999).

    Article  CAS  Google Scholar 

  10. T.B. Sercombe, G.B. Schaffer, and P. Calvert, J. Mater. Sci. 34, 4245 (1999).

    Article  CAS  Google Scholar 

  11. W.H. Tuan and R.J. Brook, J. Mater. Sci. 24, 1953 (1989).

    Article  CAS  Google Scholar 

  12. O. Sudre and F.F. Lange, J. Am. Ceram. Soc. 75, 519 (1992).

    Article  CAS  Google Scholar 

  13. T. Kimura, H. Kajiyama, R. Yazaki, and T. Yamaguchi, J. Mater. Sci. 31, 4149 (1996).

    Article  CAS  Google Scholar 

  14. Y. Nakada and T. Kimura, J. Am. Ceram. Soc. 80, 401 (1997).

    Article  CAS  Google Scholar 

  15. T.N. Tiegs and D.M. Dillard, J. Am. Ceram. Soc. 73, 1440 (1990).

    Article  CAS  Google Scholar 

  16. C.G. Levi, G.J. Abbaschian, and R. Mehrabian, Metall. Trans. A 9A, 697 (1978).

    Article  CAS  Google Scholar 

  17. D.C. Guell and A. Benard, in Flow Induced Alignment in Composite Materials, edited by T.D. Papathanasiou and D.C. Guell (Woodhead, Cambridge, 1997) pp. 1-42.

  18. K. Suganuma, T. Fujita, K. Niihara, T. Okamoto, M. Koizumi, and N. Suzuki, Mater. Sci. Technol. 5, 249 (1989).

    Article  CAS  Google Scholar 

  19. T.H. TerHaar and J. Duszczyk, J. Mater. Sci. 29, 1011 (1994).

    Article  CAS  Google Scholar 

  20. D.E. Alman and N.S. Stoloff, International Journal of Powder Metallurgy 27, 29 (1991).

    CAS  Google Scholar 

  21. I.E. Pinwill, F. Ahmed, P.S. Allen, and M.J. Bevis, Powder Metallurgy 35, 107 (1992).

    Article  CAS  Google Scholar 

  22. S. Blackburn and H. Bohm, J. Mater. Sci. 29, 4157 (1994).

    Article  CAS  Google Scholar 

  23. D.E. Alman, N.S. Stoloff, A. Bose, and R.M. German, J. Mater. Sci. 30, 5251 (1995).

    Article  CAS  Google Scholar 

  24. T. Zhang, J.R.G. Evans, and M.J. Bevis, International Journal of Powder Metallurgy 32, 331 (1996).

    CAS  Google Scholar 

  25. Z.Y. Ma, J. Bi, Y.X. Lu, and Y.X. Gao, Scripta Metallurgica et Materialia 29, 225 (1993).

    Article  CAS  Google Scholar 

  26. S. B. Sternowsky, G. O’Donnell, and L. Looney, Key Eng. Mater. 127-131, 455 (1997).

    Google Scholar 

  27. H.N. Yoshimura, M. Goncalves, and H. Goldenstein, Key Eng. Mater. 127-131, 985 (1997).

    Google Scholar 

  28. D. Bouvard and F.F. Lange, Acta Metall. Mater. 39, 3083 (1991).

    Article  CAS  Google Scholar 

  29. T. Christman, A. Needleman, and S. Suresh, Acta Metall. 37, 3029 (1989).

    Article  CAS  Google Scholar 

  30. S.F. Corbin and D.S. Wilkinson, Acta Metall. Mater. 42, 1311 (1994).

    Article  CAS  Google Scholar 

  31. S.F. Corbin and D.S. Wilkinson, Acta Metall. Mater. 42, 1319 (1994).

    Article  CAS  Google Scholar 

  32. R.Q. Guo, P.K. Rohatgi, and D. Nath, J. Mater. Sci. 31, 5513 (1996).

    Article  CAS  Google Scholar 

  33. R.Q. Guo, P.K. Rohatgi, and D. Nath, J. Mater. Sci. 32, 3971 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souvignier, C.W., Sercombe, T.B., Huo, S.H. et al. Freeform fabrication of aluminum metal-matrix composites. Journal of Materials Research 16, 2613–2618 (2001). https://doi.org/10.1557/JMR.2001.0359

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0359

Navigation