Effect of the calcium dopant on oxide ion diffusion in yttria ceramics


Tracer oxygen diffusion coefficients, D*, in polycrystalline yttria doped with Ca have been determined by a gas–solid exchange technique and secondary ion mass spectrometry. Samples containing few pores were used to avoid their influences on diffusion profiles. The resulting profiles were assigned only to volume diffusion; no grain boundary diffusion was observed. According to the effects of Ca doping on D*, the Ca contents are divided into three regions. In a Ca content region of 0–0.17 mol%, D* changed a little with Ca doping and took a minimum experimentally at 0.02 mol%. D* increased significantly within a range of 0.17–0.54 mol% and saturated at 0.54 mol% or above because of a solubility limit. The activation energies of oxygen diffusion were estimated at 249–282 kJ/mol.

This is a preview of subscription content, access via your institution.


  1. 1.

    R.W.G. Wyckoff, Crystal Structure, 2nd ed. (Interscience Publisher, New York, 1967), Vol. 2, p. 4.

    Google Scholar 

  2. 2.

    K. Ando, Y. Oishi, and H. Hase, J. Am. Ceram. Soc. 66, C-222 (1983).

  3. 3.

    K. Ando and Y. Oishi, in Proc. of Transport in Non Stoichiometric Compounds, edited by G. Simkovich and V.S. Stubican (Plenum, New York, 1985), p. 203.

  4. 4.

    Y. Larring, T. Norby, and P. Kofstad, Solid State Ionics 49, 73 (1991).

    CAS  Article  Google Scholar 

  5. 5.

    K. Katayama, H. Osawa, T. Akiba, and H. Yanagida, J. Eur. Ceram. Soc. 6, 39 (1990).

    CAS  Article  Google Scholar 

  6. 6.

    K. Ando, Y. Oishi, and Y. Hidaka, J. Chem. Phys. 65, 2751 (1976).

    CAS  Article  Google Scholar 

  7. 7.

    N. Saito, S. Matsuda, and T. Ikegami, J. Am. Ceram. Soc. 81, 2023 (1998).

    CAS  Article  Google Scholar 

  8. 8.

    H. Haneda and C. Monty, J. Am. Ceram. Soc. 72, 1153 (1989).

    CAS  Article  Google Scholar 

  9. 9.

    H.P. Klug and L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (Wiley, New York, 1974), p. 594.

  10. 10.

    J. Brown and T.H. Etsell, Solid State Ionics, 57, 251 (1992).

    CAS  Article  Google Scholar 

  11. 11.

    J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford University Press, Oxford, United Kingdom, 1975), Chap. 3.3.

  12. 12.

    H. Haneda, N. Saito, I. Sakaguchi, and T. Ikegami (submitted).

  13. 13.

    N. Saito and H. Haneda (unpublished).

  14. 14.

    F.A. Kröger and H.J. Vink, Solid State Phys. 3, 307 (1956).

    Article  Google Scholar 

  15. 15.

    N.N. Tallan and R.W. Vest, J. Am. Ceram. Soc. 49, 401 (1966).

    CAS  Article  Google Scholar 

  16. 16.

    P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (Wiley-Interscience, New York, 1972), Chap. 3.

  17. 17.

    J. Philibert, Diffusion et Transport de Maitère dans les Solides (Diffusion and Transport of Materials in Solids) (Les Éditions de Phisique, Paris, France, 1985), p. 91.

Download references

Author information



Corresponding author

Correspondence to Noriko Saito.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Saito, N., Haneda, H., Sakaguchi, I. et al. Effect of the calcium dopant on oxide ion diffusion in yttria ceramics. Journal of Materials Research 16, 23 (2001). https://doi.org/10.1557/JMR.2001.0324

Download citation