Skip to main content
Log in

Effect of annealing on microstructure, residual stress, and hardness of Al–Ti multilayered films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Al–Ti multilayered films (12 at.% Ti) with bilayer period of 16 nm were deposited by magnetron sputtering. The films were annealed in vacuum at 350 or 400 °C between 2 and 24 h. During annealing, a diffusion-controlled chemical reaction between Al and Ti layers led to Al3Ti precipitation. Differential thermal analysis studies showed an exothermic reaction associated with Al3Ti formation, taking place between 320 and 390 °C, depending on the heating rate. The evolution of microstructure with annealing was examined with transmission electron microscopy and x-ray diffraction. The hardness and residual stress of the films in the as-deposited and annealed conditions were studied in relation to the microstructural changes on annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.N. Rittner, J.R. Weertman, and J.A. Eastman, Acta Mater. 44, 1271 (1996).

    Article  CAS  Google Scholar 

  2. S.R. Agnew, B.R. Elliot, C.J. Youngdahl, K.J. Hernker, and J.R. Weertman, in Modeling of Structure and Mechanics of Materials from Microscale to Product, edited by J.V. Carstensen, T. Leffers, T. Lorentzen, O.B. Pedersen, B.F. Sørensen and G. Winther (Risø National Laboratory, Roskilde, Denmark, 1998), p. 1.

  3. E.G. Colgan, Mater. Sci. Rep. 5, 1 (1990).

    Article  CAS  Google Scholar 

  4. F.J.J. Van Loo and G.D. Reick, Acta Metall. 21, 61 (1973).

    Article  Google Scholar 

  5. M. Wittmer, F. Le Goues, and H-C. W. Huang, J. Electrochem. Soc. 132, 1450 (1985).

    Article  CAS  Google Scholar 

  6. X.A. Zhao, F.C.T. So, and M-A. Nicolet, J. Appl. Phys. 63, 2800 (1998).

    Article  Google Scholar 

  7. K.P. Mingard and B. Cantor, J. Mater. Res. 8, 274 (1993).

    Article  CAS  Google Scholar 

  8. R.F. Lever, J.K. Howard, W.K. Chu, and P.J. Smith, J. Vac. Sci. Technol. 14, 158 (1977).

    Article  CAS  Google Scholar 

  9. E.G. Colgan and J.W. Mayer, J. Mater. Res. 4, 815 (1989).

    Article  CAS  Google Scholar 

  10. R. Banerjee, X.D. Zhang, S.A. Dregia, and H.L. Fraser, in Nanophase and Nanocomposite Materials II, edited by S. Komarreni, J.C. Parker, and H.J. Wollenberger (Mater. Res. Soc. Symp. Proc. 457, Pittsburgh, PA, 1997) p. 309.

  11. P. Maugis, G. Blaise, and J. Philibert, in Interface Dynamics and Growth, edited by K.S. Liang, M.P. Anderson, R.F. Bruinsma, and G. Scoles (Mater. Res. Soc. Symp. Proc. 237, Pittsburgh, PA, 1992), p. 679.

  12. R.W. Bower, Appl. Phys. Lett. 23, 99 (1973).

    Article  CAS  Google Scholar 

  13. E.G. Colgan, M. Nastasi, and J.W. Mayer, J. Appl. Phys. 58, 4125 (1985).

    Article  CAS  Google Scholar 

  14. M. Eizenberg, R.D. Thompson, and K.N. Tu, J. Appl. Phys. 53, 6891 (1982).

    Article  CAS  Google Scholar 

  15. Q.Z. Hong, D.A. Lilientield, and J.W. Mayer, J. Appl. Phys. 64, 4478 (1988).

    Article  CAS  Google Scholar 

  16. T. Matsui, K. Morii, and Y. Nakayama, Scripta Metall. Mater. 24, 1149 (1990).

    Article  CAS  Google Scholar 

  17. E.G. Colgan and J.W. Mayer, J. Mater. Res. 4, 815 (1989).

    Article  CAS  Google Scholar 

  18. J. Tardy and K.N. Tu, Phys. Rev. B 32, 2070 (1985).

    Article  CAS  Google Scholar 

  19. E.G. Colgan and J.W. Mayer, Nucl. Inst. Methods B 17, 242 (1986).

    Article  Google Scholar 

  20. C. Michaelsen, S. Wobhlert, R. Bormann, and K. Barmak, in Thermodynamics and Kinetics of Phase Transformations, edited by J.S. Im, B. Park, A.L. Greer, and G.B. Stephenson (Mater. Res. Symp. Proc. 398, Pittsburgh, PA, 1996), p. 245.

  21. R. Mitra, A. Madan, R.A. Hoffman, W-A. Chiou, and J.R. Weertman, in Thin Films, Stresses and Mechanical Properties VIII, edited by R. Vinci, O. Kraft, N. Moody, P. Besser, and E. Shaffer II (Mater. Res. Soc. Symp. Proc. 594, Warrendale, PA), p. 43.

  22. G.G. Stoney, Proc. Roy. Soc. London A82, 172 (1909).

    Google Scholar 

  23. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  24. R. Ahuja and H.L. Fraser, JOM 46, 35 (1994).

    Article  CAS  Google Scholar 

  25. R. Banerjee, S.A. Dregia, and H.L. Fraser, Acta Mater. 47, 4225 (1999).

    Article  CAS  Google Scholar 

  26. R.A. Schwarzer, in Trends and New Applications of Thin Films, edited by H. Hoffman (Trans. Tech. Publications, Uetikon-Zuerich, Switzerland, 1998).

  27. R. Mitra, R.A. Hoffman, A. Madan, and J.R. Weertman, J. Mater. Res. 16, 1010 (2001).

    Article  CAS  Google Scholar 

  28. R. Banerjee, R. Ahuja, and H.L. Fraser, Phys. Rev. Lett. 76, 3778 (1996).

    Article  CAS  Google Scholar 

  29. J. Bonevich, D. van Heerden, and D. Josell, J. Mater. Res. 14, 1977 (1999).

    Article  CAS  Google Scholar 

  30. D. van Hardeen, D. Josell, and D. Shectman, Acta Mater. 44, 297 (1996).

    Article  Google Scholar 

  31. Powder Diffraction File, Card Nos. 4-787, 5-682, Inorganic Phases, JCPDS International Centre for Diffraction Data (Swarthmore, PA, 1989).

  32. R. Banerjee, X-D. Zhang, S.A. Dregia, and H.L. Fraser, Acta Mater. 47, 1153 (1999).

    Article  CAS  Google Scholar 

  33. S.A. Dregia, R. Banerjee, and H.L. Fraser, Scripta Mater. 39, 217 (1998).

    Article  CAS  Google Scholar 

  34. I. Barin, Thermochemical Data of Pure Substances (VCH, Weinheim, Germany, 1989), p. 71.

  35. R.W. Bené, Appl. Phys. Lett. 41, 529 (1982).

    Article  Google Scholar 

  36. K-I. Ouchi, Y. lijima, and K-I. Hirano, in Titanium ‘80 Science and Technology, edited by H. Kimura and O. Izumi (Proc. 4th Int. Conf. Titanium, Kyoto, Japan, TMS, Warrendale, PA, 1980), p. 559.

  37. E.B. Haugen, Probabilistic Approaches to Design (Wiley, New York, 1968), p. 47.

  38. H.E. Kissinger, Analyt. Chem. 29, 1702 (1957).

    Article  CAS  Google Scholar 

  39. H. Choi-Yim, R. Busch, U. Koster, and W.L. Johnson, Acta Mater. 47, 2455 (1999).

    Article  CAS  Google Scholar 

  40. J.A. Ruud, A. Witvrouw, and F. Spaepen, J. Appl. Phys. 74, 2517 (1993).

    Article  CAS  Google Scholar 

  41. A. Misra, H. Kung, T.E. Mitchell, and M. Nastasi, J. Mater. Res. 15, 756 (2000).

    Article  CAS  Google Scholar 

  42. J.A. Bain, L.J. Chyung, S. Brennan, and B.M. Clemens, Phys. Rev. B 44, 1184 (1991).

    Article  CAS  Google Scholar 

  43. R.C. Cammarata and K. Sieradzki, Phys. Rev. Lett. 62, 2005 (1989).

    Article  CAS  Google Scholar 

  44. D.S. Gardner, T.L. Michalka, P.A. Flinn, T.W. Barbee, Jr., K.C. Saraswat, and J.D. Meindl, in Proc. 2nd Int. IEEE VLSI Multilevel Interconnection Conf, (IEEE, New York,1985), p.102.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, R., Madan, A., Hoffman, R.A. et al. Effect of annealing on microstructure, residual stress, and hardness of Al–Ti multilayered films. Journal of Materials Research 16, 2064–2076 (2001). https://doi.org/10.1557/JMR.2001.0283

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0283

Navigation