Skip to main content
Log in

Transmission electron microscopy study of n= 1–5 Srn+1TinO3n+1 epitaxial thin films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Epitaxial Srn+1TinO3n+1 thin films with n = 1–5 were synthesized on (001) SrTiO3 substrates by reactive molecular beam epitaxy. The structure and microstructure of the films were investigated by x-ray diffraction, transmission electron microbeam diffraction, and high-resolution transmission electron microscopy (HRTEM) in combination with computer image simulations. Both diffraction and HRTEM studies revealed that all the films are epitaxially oriented with their c axis perpendicular to the (001) SrTiO3 plane of the substrate. Detailed investigations using quantitative HRTEM methods indicated that the films have the expected n = 1–5 structures of the Ruddlesden–Popper Srn+1TinO3n+1 homologous series. Among these films, Sr2TiO4, Sr3Ti2O7, and Sr4Ti3O10 thin films are nearly free of intergrowths, while Sr5Ti4O13 and Sr6Ti5O16 thin films contain noticeably more antiphase boundaries in their perovskite sheets and intergrowth defects. We show that these results are consistent with what is known about the thermodynamics of Srn+1TinO3n+1 phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Müller-Buschbaum, Angew. Chem., Int. Ed. Engl. 28, 1472 (1989).

    Article  Google Scholar 

  2. Y. Moritomo, A. Asamitsu, H. Kuwahara, and Y. Tokura, Nature (London) 380, 141 (1996).

    Article  CAS  Google Scholar 

  3. S.N. Ruddlesden and P. Popper, Acta Crystallogr. 10, 538 (1957).

    Article  CAS  Google Scholar 

  4. S.N. Ruddlesden and P. Popper, Acta Crystallogr. 11, 54 (1958).

    Article  CAS  Google Scholar 

  5. U. Balachandran and N.G. Eror, J. Mater. Sci. 17, 2133 (1982).

    Article  CAS  Google Scholar 

  6. D.M. Smyth, Annu. Rev. Mater. Sci. 15, 329 (1985).

    Article  CAS  Google Scholar 

  7. S. Witek, D.M. Smyth, and H. Pickup, J. Am. Ceram. Soc. 67, 372 (1984).

    Article  CAS  Google Scholar 

  8. M. Fujimoto and M. Watanabe, J. Mater. Sci. 20, 3683 (1985).

    Article  CAS  Google Scholar 

  9. M. Dryś and W. Trzebiatowski, Rocz. Chem. 31, 489 (1957).

    Google Scholar 

  10. Phase Diagrams for Ceramists, edited by E.M. Levin, C.R. Robbins, and H.F. McMurdie (American Ceramic Society, Columbus, OH, 1964), p. 119 (Fig. 297).

  11. A. Cocco and F. Massazza, Ann. Chim. (Rome) 53, 883 (1963).

    CAS  Google Scholar 

  12. Phase Diagrams for Ceramists 1969 Supplement, edited by E.M. Levin, C.R. Robbins, and H.F. McMurdie (American Ceramic Society, Columbus, OH, 1969), p. 93 (Fig. 2334).

  13. M.A. McCoy, R.W. Grimes, and W.E. Lee, Philos. Mag. A 75, 833 (1997).

    Article  CAS  Google Scholar 

  14. C. Noguera, Philos. Mag. Lett. 80, 173 (2000).

    Article  CAS  Google Scholar 

  15. K. Lukaszewicz, Rocz. Chem. 33, 239 (1959).

    CAS  Google Scholar 

  16. G.J. McCarthy, W.B. White, and R. Roy, J. Am. Ceram. Soc. 52, 463 (1969).

    Article  CAS  Google Scholar 

  17. M.M. Elcombe, E.H. Kisi, K.D. Hawkins, T.J. White, P. Goodman, and S. Matheson, Acta Crystallogr., Sect. B: Struct. Sci. 47, 305 (1991).

    Google Scholar 

  18. W. Sugimoto, M. Shirata, M. Takemoto, S. Hayami, Y. Sugahara, and K. Kuroda, Solid State Ionics 108, 315 (1998).

    Article  CAS  Google Scholar 

  19. R.J.D. Tilley, J. Solid State Chem. 21, 293 (1977).

    Article  CAS  Google Scholar 

  20. W. Kwestroo and H.A.M. Paping, J. Am. Ceram. Soc. 42, 292 (1959).

    Article  CAS  Google Scholar 

  21. K. Hawkins and T.J. White, Philos. Trans. R. Soc. London, Ser. A 336, 541 (1991).

    CAS  Google Scholar 

  22. G. Pfaff, J. Eur. Ceram. Soc. 9, 121 (1992).

    Article  CAS  Google Scholar 

  23. J-H. Sohn, Y. Inaguma, M. Itoh, and T. Nakamura, Mater. Sci. Eng. B 41, 50 (1996).

    Article  Google Scholar 

  24. P.L. Wise, I.M. Reaney, W.E. Lee, T.J. Price, D.M. Iddles, and D.S. Cannell, Proceedings of the International Conference on Microwave Materials and Their Applications (MMA 2000) (Bled, Slovenia) (to be published).

  25. I.M. Reaney, P.L. Wise, W.E. Lee, D.M. Iddles, D.S. Cannell, and T.J. Price, Proceedings of the 12th IEEE International Symposium on the Applications of Ferroelectrics (ISAF 2000) (Honolulu, Hawaii) (to be published).

  26. G.J. McCarthy, W.B. White, and R. Roy, J. Inorg. Nucl. Chem. 31, 329 (1969).

    Article  CAS  Google Scholar 

  27. W.B. White and V.G. Keramidas, Solid State Chemistry, NBS Spec. Publ. (U.S.) 364, 113 (1972).

    Google Scholar 

  28. D.G. Schlom, Y. Jia, L-N. Zou, J.H. Haeni, S. Briczinski, M.A. Zurbuchen, C.W. Leitz, S. Madhavan, S. Wozniak, Y. Liu, M.E. Hawley, G.W. Brown, A. Dabkowski, H.A. Dabkowska, R. Uecker, and P. Reiche, in Superconducting and Related Oxides: Physics and Nanoengineering III, edited by D. Pavuna and I. Bozovic, SPIE Vol. 3481 (SPIE, Bellingham, WA, 1998), pp. 226–240.

  29. J.H. Haeni, C.D. Theis, D.G. Schlom, W. Tian, X.Q. Pan, H. Chang, I. Takeuchi, and X.D. Xiang, Appl. Phys. Lett. 78, 3292 (2001).

    Article  CAS  Google Scholar 

  30. Y. Iwazaki, T. Suzuki, S. Sekiguchi, and M. Fujimoto, Jpn. J. Appl. Phys., Part 2 38, L1443 (1999).

  31. Y. Iwazaki, T. Suzuki, S. Sekiguchi, and M. Fujimoto, Jpn. J. Appl. Phys., Part 2 39, L303 (2000).

  32. H. Tanaka and T. Kawai, Appl. Phys. Lett. 76, 3618 (2000).

    Article  CAS  Google Scholar 

  33. A.Y. Cho, Surf. Sci. 17, 494 (1969); A.Y. Cho, J. Appl. Phys. 41, 2780 (1970); A.Y. Cho, J. Appl. Phys. 42, 2074 (1971).

    Google Scholar 

  34. A.C. Gossard, P.M. Petroff, W. Weigmann, R. Dingle, and A. Savage, Appl. Phys. Lett. 29, 323 (1976).

    Article  CAS  Google Scholar 

  35. T. Sakamoto, H. Funabashi, K. Ohta, T. Nakagawa, N.J. Kawai, T. Kojima, and Y. Bando, Superlattices Microstruct. 1, 347 (1985).

    Article  CAS  Google Scholar 

  36. Molecular Beam Epitaxy: Applications to Key Materials, edited by R.F.C. Farrow (Noyes, Park Ridge, NJ, 1995).

  37. D.G. Schlom, A.F. Marshall, J.T. Sizemore, Z.J. Chen, J.N. Eckstein, I. Bozovic, K.E. von Dessonneck, J.S. Harris, Jr., and J.C. Bravman, J. Cryst. Growth 102, 361 (1990).

    Article  CAS  Google Scholar 

  38. J.N. Eckstein, I. Bozovic, M. Klausmeier-Brown, G. Virshup, and K.S. Ralls, Thin Solid Films 216, 8 (1992).

    Article  CAS  Google Scholar 

  39. A. Brazdeikis, A. Vailionis, and A.S. Flodstrom, Physica C 235–240, 711 (1994).

    Article  Google Scholar 

  40. D.G. Schlom and J.S. Harris, Jr., in Molecular Beam Epitaxy: Applications to Key Materials, edited by R.F.C. Farrow (Noyes, Park Ridge, NJ, 1995), pp. 505–622.

  41. Applied EPI, St. Paul, MN.

  42. D.G. Schlom, C.D. Theis, and M.E. Hawley, in Integrated Thin Films and Applications, edited by R.K. Pandey, D.E. Witter, and U. Varshney (American Ceramic Society, Westerville, OH, 1998), Vol. 86, pp. 41–60.

  43. Aldrich Chemical Company, Inc., Milwaukee, WI.

  44. Varian Vacuum Products, Lexington, MA.

  45. C.D. Theis and D.G. Schlom, J. Vac. Sci. Technol. A 14, 2677 (1996).

    Article  CAS  Google Scholar 

  46. J.H. Haeni, C.D. Theis, and D.G. Schlom, J. Electroceram. 4, 399 (2000).

    Article  Google Scholar 

  47. ATOMICAS, Intelligent Sensor Technology, Mountain View, CA.

  48. P.A. Stadelmann, Ultramicroscopy 21, 131 (1987).

    Article  CAS  Google Scholar 

  49. G. Möbus and M. Rühle, Ultramicroscopy 56, 54 (1994).

    Article  Google Scholar 

  50. W.E. King and G.H. Campbell, Ultramicroscopy 56, 46 (1994).

    Article  CAS  Google Scholar 

  51. T. Williams, F. Lichtenberg, A. Reller, and G. Bednorz, Mater. Res. Bull. 26, 763 (1991).

    Article  CAS  Google Scholar 

  52. J. Sloan, P.D. Battle, M.A. Green, M.J. Rosseinsky, and J.F. Vente, J. Solid State Chem. 138, 135 (1998).

    Article  CAS  Google Scholar 

  53. R. Seshadri, M. Hervieu, C. Martin, A. Maignan, B. Domenges, B. Raveau, and A.N. Fitch, Chem. Mater. 9, 1778 (1997).

    Article  CAS  Google Scholar 

  54. J. Drennan, C.P. Tavares, and B.C.H. Steele, Mater. Res. Bull. 17, 621 (1982).

    Article  CAS  Google Scholar 

  55. R.A. Mohan Ram, L. Ganapathi, P. Ganguly, and C.N.R. Rao, J. Solid State Chem. 63, 139 (1986).

    Article  Google Scholar 

  56. W.T. Fu, H.W. Zandbergen, Q. Xu, J.M. van Ruitenbeek, L.J. de Jongh, and G. van Tendeloo, Solid State Commun. 70, 1117 (1989).

    Article  CAS  Google Scholar 

  57. D.R. Veblen, Am. Mineral. 76, 801 (1991).

    CAS  Google Scholar 

  58. A. Nozaki, H. Yoshikawa, T. Wada, H. Yamauchi, and S. Tanaka, Phys. Rev. B 43, 181 (1991).

    Article  CAS  Google Scholar 

  59. M. Čeh, V. Kraševec, and D. Kolar, J. Solid State Chem. 103, 263 (1993).

    Article  Google Scholar 

  60. S. Adachi, H. Yamauchi, S. Tanaka, and N. Môri, Physica C 212, 164 (1993)

  61. Z. Hiroi, M. Takano, M. Azuma, and Y. Takeda, Nature 364, 315 (1993).

    Article  CAS  Google Scholar 

  62. P. Laffez, G. Van Tendeloo, R. Seshadri, M. Hervieu, C. Martin, A. Maignan, and B. Raveau, J. Appl. Phys. 80, 5850 (1996).

    Article  CAS  Google Scholar 

  63. S.D. Bader, R.M. Osgood III, D.J. Miller, J.F. Mitchell, and J.S. Jiang, J. Appl. Phys. 83, 6385 (1998).

    Article  CAS  Google Scholar 

  64. C.N.R. Rao and B. Raveau, Transition Metal Oxides: Structure, Properties, and Synthesis of Ceramic Oxides, 2nd ed. (Wiley-VCH, New York, 1998), pp. 61–74.

  65. K. Szot and W. Speier, Phys. Rev. B 60, 5909 (1999).

    Article  CAS  Google Scholar 

  66. K.R. Udayakumar and A.N. Cormack, J. Am. Ceram. Soc. 71, C469 (1988).

  67. I. Barin, Thermochemical Properties of Pure Substances, 3rd ed. (VCH, Weinheim, Germany, 1995), Vol. 2.

  68. J.B. Thompson, Jr., in Structure and Bonding in Crystals, edited by M. O’Keeffe and A. Navrotsky (Academic Press, New York, 1981), Vol. 2, Chap. 22, pp. 167–196.

  69. R.E. Dickerson, Molecular Thermodynamics (Benjamin/ Cummings, Menlo Park, CA, 1969), pp. 51–52.

  70. C.H.P. Lupis, Chemical Thermodynamics of Materials (Elsevier, New York, 1983), pp. 67–68, 196–200.

  71. R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, New York, 1993), pp. 248–261.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Q. Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, W., Pan, X.Q., Haeni, J.H. et al. Transmission electron microscopy study of n= 1–5 Srn+1TinO3n+1 epitaxial thin films. Journal of Materials Research 16, 2013–2026 (2001). https://doi.org/10.1557/JMR.2001.0276

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0276

Navigation