Skip to main content
Log in

Texture in Ti/Al and Nb/Al multilayer thin films: Role of Cu

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Fiber texture in Ti/Al and Nb/Al polycrystalline multilayer thin films, with bilayer thicknesses (Λ) ranging from 20–333 nm and having a fixed stoichiometry of 1/3, has been investigated by using x-ray pole figures and transmission electron microscopy. Two sets of films were deposited; one set contained pure Al and the other Al–1.0 wt% Cu. The results indicated that texture was strengthened by the formation of a coherent superlattice for the Nb/pure-Al film with the smallest bilayer thickness. By contrast, the texture in Ti/pure-Al films with a similar period was not as strong. The texture also decreased with increasing Λ for both the Ti/pure-Al and Nb/pure-Al films. An increase in the width of the Al (111) peak and an offset of the fiber axis from the substrate normal of 5–8° was observed in the Λ = 333 nm films prepared by using Al–1.0 wt% Cu. The decrease in texture on addition of Cu to Al was attributed primarily to an increase in interlayer roughness as a consequence of reduction in the Al(Cu) grain size. These observations were interpreted in the context of structure zone and dynamic roughness models of film growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Vaidya and A.K. Sinha, Thin Solid Films 75, 253 (1981).

    Article  CAS  Google Scholar 

  2. D.B. Knorr, K.P. Rodbell, and D.P. Tracy, in Materials Reliability Issues in Microelectronics, edited by J.R. Lloyd, P.S. Ho, C.T. Sah, and F. Yost (Mater. Res. Soc. Symp. Proc. 225, Pittsburgh, PA, 1991), p. 21.

  3. D.B. Knorr, D.P. Tracy, and K.P. Rodbell, Appl. Phys. Lett. 59, 3241 (1991).

    Article  CAS  Google Scholar 

  4. D.B. Knorr, in Materials Reliability in Microelectronics, III, edited by K.P. Rodbyl, W.F. Filter, H.J. Frost, and P.S. Ho (Mater. Res. Soc. Symp. Proc. 309, Pittsburgh, PA, 1993), p. 75.

  5. D.P. Tracy, D.B. Knorr, and K.P. Rodbell, J. Appl. Phys. 76, 2671 (1994).

    Article  CAS  Google Scholar 

  6. D.B. Knorr and K.P. Rodbell, J. Appl. Phys. 79, 2409 (1996).

    Article  CAS  Google Scholar 

  7. D.B. Knorr, S.M. Merchant, and M.A. Bilberger, J. Vac. Sci. Technol. B 16, 2734 (1998).

    Article  CAS  Google Scholar 

  8. L.M. Ting and Q-Z. Hong, in Materials Reliability in Microelectronics VI, edited by W.F. Filter, J.J. Clement, A.S. Oates, R. Rosenberg, and P.M. Lenahan (Mater. Res. Soc. Symp. Proc. 428, Pittsburgh, PA, 1996), p. 75.

  9. H. Onoda, K. Touchi, and K. Hashimoto, Jpn. J. Appl. Phys. Pt. 2 34, L1037 (1995).

    Article  Google Scholar 

  10. H. Onoda, T. Narita, K. Touchi, and K. Hashimoto, J. Vac. Sci. Technol. B 14, 2645 (1996).

    Article  CAS  Google Scholar 

  11. K.P. Rodbell, V. Svilan, L.M. Gignac, P.W. Dehaven, R.J. Murphy, and T.J. Licata, in Materials Reliability in Microelectronics VI, edited by W.F. Filter, J.J. Clement, A.S. Oates, R. Rosenberg, and P.M. Lenahan (Mater. Res. Soc. Symp. Proc. 428, Pittsburgh, PA, 1996), p. 261.

  12. C.E. Murray, Ph.D. Thesis, Northwestern University, Chicago, IL (2000).

  13. C. Michaelsen, S. Wöhlert, and R. Bormann, in Polycrystalline Thin Films: Structure, Texture, Properties, and Applications, edited by K. Barmak, M.A. Parker, J.A. Floro, R. Sinclair, and D.A. Smith (Mater. Res. Soc. Symp. Proc. 343, Pittsburgh, PA, 1994), p. 205.

  14. M. Adamik, I. Tomov, and P.B. Barna, Solid State Phenom. 56, 213 (1997).

    Article  CAS  Google Scholar 

  15. M. Adamik, P.B. Barna, and I. Tomov, Surf. Coat. Technol. 100–101, 333 (1998).

    Google Scholar 

  16. K. Barmak, C. Michaelsen, S. Vivekanand, and F. Ma, Phil. Mag. A 77, 167 (1998).

    Article  CAS  Google Scholar 

  17. D.B. McWhan, M. Gurvich, J.M. Rowell, and L.R. Walker, J. Appl. Phys. 54, 3886 (1983).

    Article  CAS  Google Scholar 

  18. J.R. Baumann, E.K. Liebemann, M. Simon, and E. Bucher, Phys. Rev. B 45, 3778 (1992).

    Article  CAS  Google Scholar 

  19. G. Lucadamo, M. Watanabe, K. Barmak, D.B. Williams, C. Michaelsen, and R. Alani, Phil. Mag. A 79, 1423 (1999).

    Article  CAS  Google Scholar 

  20. G. Lucadamo, K. Barmak, S. Hyun, C. Cabral, Jr., and C. Lavoie, Mat. Lett. 39, 268 (1999).

    Article  CAS  Google Scholar 

  21. G. Lucadamo, K. Barmak, D.T. Carpenter, C. Lavoie, C. Cabral, Jr., C. Michaelsen, and J.M. Rickman, in Polycrystalline Metal and Magnetic Thin Films, edited by D.E. Laughlin, K.P. Rodbell, O. Thomas, and B. Zhang (Mater. Res. Soc. Symp. Proc. 562, Pittsburgh, PA, 1999), p. 159.

  22. G. Lucadamo, K. Barmak, and S. Hyun, Thermochim. Acta 348, 53 (2000).

    Article  CAS  Google Scholar 

  23. G. Lucadamo, Ph.D. Thesis, Lehigh University, Bethlehem, PA (1999).

  24. Joint Committee on Powder Diffraction Standards, Powder Diffraction File, Inorganic Index (Swarthmore, PA: International Center for Diffraction Data) (1998).

  25. C. Michaelsen, S. Wolhert, R. Bormann, and K. Barmak, in Thermodynamics and Kinetics of Phase Transformations, edited by J.S. Im, B. Park, A.L. Greer, and G.B. Stephenson (Mater. Res. Soc. Symp. Proc. 398, Pittsburgh, PA, 1996), p. 245.

  26. C. Michaelsen (private communication).

  27. J. Bonevich, D. van Heerden, and D. Josell, J. Mater. Res. 14, 1977 (1999).

    Article  CAS  Google Scholar 

  28. D.E. Savage, N. Schimke, Y-H. Phang, and M.G. Lagally, J. Appl. Phys. 71, 3283 (1992).

    Article  CAS  Google Scholar 

  29. S. Kominami, H. Yamada, N. Miyamoto, and K. Takagi, IEEE Trans. Appl. Supercond. 3, 2182 (1993).

    Article  Google Scholar 

  30. C.D. Thomas, M.P. Ulmer, and J.B. Ketterson, J. Appl. Phys. 84, 364 (1998).

    Article  CAS  Google Scholar 

  31. D.J. Srolovitz, A. Mazor, and B.G. Bukiet, J. Vac. Soc. A 6, 2371 (1988).

    Article  CAS  Google Scholar 

  32. A.E. Lita and J.E. Sanchez, Jr., J. Appl. Phys. 85, 876 (1999).

    Article  CAS  Google Scholar 

  33. A.E. Lita and J.E. Sanchez, Jr., Phys. Rev. B 61, 7693 (2000).

    Article  Google Scholar 

  34. F. Family and T. Viscek, J. Phys. A 18, 75 (1985).

    Google Scholar 

  35. A. Esposito and E. Monticone, Phil. Mag. B 80, 1133 (2000).

    Article  CAS  Google Scholar 

  36. C.R.M. Grovenor, H.T.G. Hentzell, and D.A. Smith, Acta Metall. 32, 773 (1984).

    Article  CAS  Google Scholar 

  37. P.B. Barna and M. Adamik, Thin Solid Films 317, 27 (1998).

    Article  CAS  Google Scholar 

  38. J.W. Cahn, Acta Metall. 10, 789 (1962).

    Article  CAS  Google Scholar 

  39. D.W. Demianczuk and K.T. Aust, Acta Metall. 23, 1149 (1975).

    Article  CAS  Google Scholar 

  40. W.B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon, New York, 1964), p. 328.

    Google Scholar 

  41. M. Copel, K.P. Rodbell, and R.M. Tromp, Appl. Phys. Lett. 68, 1625 (1996).

    Article  CAS  Google Scholar 

  42. H.H. Solak, G.F. Lorusso, S. Singh-Gasson, and F. Cerrina, Appl. Phys. Lett. 74, 22 (1999).

    Article  CAS  Google Scholar 

  43. K. Barmak, K.R. Coffey, D.A. Rudman, and S. Foner, J. Appl. Phys. 67, 3780 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Barmak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucadamo, G., Barmak, K. & Rodbell, K.P. Texture in Ti/Al and Nb/Al multilayer thin films: Role of Cu. Journal of Materials Research 16, 14 (2001). https://doi.org/10.1557/JMR.2001.0202

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/JMR.2001.0202

Navigation