Skip to main content
Log in

Rational solvent selection strategies to combat striation formation during spin coating of thin films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Striation defects in spin-coated thin films are a result of unfavorable capillary forces that develop due to the physical processes commonly involved in the spin-coating technique. Solvent evaporation during spinning causes depletion at the surface of the more volatile solution components while simultaneous viscous out-flow occurs providing the main source of solution thickness reduction during any typical spinning run. The composition changes in the surface layer can either stabilize or destabilize the surface with respect to convective motions within the coating solution. Destabilization (and therefore possible striation formation) happens when the surface composition changes so that a larger surface tension will develop. Thus, a careful cross-referencing of solvent volatility with surface tension effects can help establish solution conditions that will prevent this instability from arising. A plot of solvent vapor pressure (P v) versus solvent surface tension (σ) is introduced and utilized to help discuss the impact of solvent choice when making coatings via spin coating. One important result is that when desiring to deposit a coating having a surface tension of σsolid, then it is favorable to use a fully miscible solvent that has a higher surface tension (i.e., σliquid > σsolid). More complicated solution mixtures were also examined, including dual-solvent systems and water-containing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.G. Emslie, F.T. Bonner, and C.G. Peck, J. Appl. Phys. 29, 858 (1958).

    Article  CAS  Google Scholar 

  2. D. Meyerhofer, J. Appl. Phys. 49, 3993 (1978).

    Article  Google Scholar 

  3. D.E. Bornside, C.W. Macosko, and L.E. Scriven, J. Imaging Technol. 13, 122 (1987).

    CAS  Google Scholar 

  4. W.W. Flack, D.S. Soong, A.T. Bell, and D.W. Hess, J. Appl. Phys. 56, 1199 (1984).

    Article  CAS  Google Scholar 

  5. C.J. Lawrence, Phys. Fluids 31, 2786 (1988).

    Article  CAS  Google Scholar 

  6. C.J. Lawrence, Phys. Fluids A 2, 453 (1990).

    Article  CAS  Google Scholar 

  7. C.J. Lawrence and W. Zhou, J. Non-Newtonian Fluid Mech. 39, 137 (1991).

    Article  CAS  Google Scholar 

  8. T. Ohara, Y. Matsumoto, and H. Ohashi, Phys. Fluids A 1, 1949 (1989).

    Article  CAS  Google Scholar 

  9. S. Shimoji, Jpn. J. Appl. Phys. 26, L905 (1987).

  10. S.A. Jenekhe, Ind. Eng. Chem. Fundam. 23, 425 (1984).

    Article  CAS  Google Scholar 

  11. D.E. Haas, J.N. Quijada, S.J. Picone, and D.P. Birnie, III, Proc. SPIE 3943, 280 (2000).

    Article  CAS  Google Scholar 

  12. B.T. Chen, Polym. Eng. Sci. 23, 399 (1983).

    Article  CAS  Google Scholar 

  13. R. Malangone and C.D. Needham, J. Electrochem. Soc. 129, 2881 (1982).

    Article  CAS  Google Scholar 

  14. W.J. Daughton, P. O’Hagan, and F.L. Givens, Thickness variance of spun-on Photoresist, revisited, in Kodak Microelectronics Seminar Proceedings, San Diego, CA (Kodak, Rochester, NY, 1978), PP. 15–20.

  15. P.C. Sukanek, J. Electrochem. Soc. 138, 1712 (1991).

    Article  Google Scholar 

  16. P.C. Sukanek, J. Imaging Technol. 11, 184 (1985).

    CAS  Google Scholar 

  17. D.E. Bornside, C.W. Macosko, and L.E. Scriven, J. Electrochem. Soc. 138, 317 (1991).

    Article  CAS  Google Scholar 

  18. J.H. Lai, Polym. Eng. Sci. 19, 1117 (1979).

    Article  CAS  Google Scholar 

  19. T. Ohara, Y. Matsumoto, and H. Ohashi, Phys. Fluids A 1, 1949 (1989).

    Article  CAS  Google Scholar 

  20. D.P. Birnie, III, and Manuel Manley, Phys. Fluids 9, 870 (1997).

    Article  CAS  Google Scholar 

  21. D.P. Birnie, III, J. Non-Cryst. Solids 218, 174 (1997).

    Article  CAS  Google Scholar 

  22. J. Gu, M.D. Bullwinkel, and G.A. Campbell, J. Appl. Polym. Sci. 57, 717 (1995).

    Article  CAS  Google Scholar 

  23. J. Gu, M.D. Bullwinkel, and G.A. Campbell, Polym. Eng. Sci. 36, 1019 (1996).

    Article  CAS  Google Scholar 

  24. F. Horowitz, E. Yeatman, E. Dawnay, and A. Fardad, J. Phys. III Fr. 3, 2059 (1993).

    CAS  Google Scholar 

  25. F. Horowitz, E. Yeatman, E. Dawnay, and A. Fardad, SPIE Proc. 2288, 67 (1994).

    Article  CAS  Google Scholar 

  26. D.P. Birnie, III, B.J.J. Zelinski, S.P. Marvel, S.M. Melpolder, and R. Roncone, Opt. Eng. 31, 2012 (1992).

    Article  CAS  Google Scholar 

  27. D.P. Birnie, III, B.J.J. Zelinski, and D.L. Perry, Opt. Eng. 34, 1782 (1995).

    Article  CAS  Google Scholar 

  28. D.P. Birnie, III, M. Manley, B.J.J. Zelinski, and S.M. Melpolder, Opt. Interference Coat. ‘95, Tech. Digest, TD1–TD3 (1995).

  29. PZT coatings were made using a technique developed by R.A. Assink and R.W. Schwartz, Chem. Mat. 5, 511 (1993).

    Article  CAS  Google Scholar 

  30. H. Benard, Rev. Gen. Sci. Pures Appl. Bull Assoc. Fr. Av. Sci. 11, 1261 (1900).

    Google Scholar 

  31. B.K. Daniels, C.R. Szmanda, M.K. Templeton, and P. Trefonas III, SPIE Proc. 631, 192 (1986).

    Article  CAS  Google Scholar 

  32. X.M. Due, X. Orignac, and R.M. Almeida, J. Am. Ceram. Soc. 78, 2254 (1995).

    Article  Google Scholar 

  33. M.J. Block, Nature 178, 650 (1956).

    Article  CAS  Google Scholar 

  34. J.R.A. Pearson, J. Fluid Mech. 4, 489 (1958).

    Article  Google Scholar 

  35. CRC Handbook of Chemistry and Physics (Chemical Rubber Co., Boca Raton, FL, 1999), edition on CDROM.

  36. G. Vazquez, E. Alvarez, and J.M. Navaza, J. Chem. Eng. Data 40, 611 (1995).

    Article  CAS  Google Scholar 

  37. D.E. Haas and D.P. Birnie, III, J. Mater. Sci. (2000, submitted for publication).

  38. D.A. Nield, J. Fluid Mech. 19, 341 (1964).

    Article  Google Scholar 

  39. A. Vidal and A. Acrivos, Ind. Eng. Chem. Fundam. 7(1), 53 (1968).

  40. D.J. Benney, J. Math. Phys. 45, 150 (1966).

    Article  Google Scholar 

  41. M.K. Smith, J. Fluid Mech. 217, 469 (1990).

    Article  CAS  Google Scholar 

  42. A. Oron, S.H. Davis, and S.G. Bankoff, Rev. Mod. Phys. 69, 93 (1997).

    Article  Google Scholar 

  43. L.E. Scriven and C.V. Sternling, Nature 187, 186 (1960).

    Article  Google Scholar 

  44. J. Thomson, Philos. Mag. 10, 330 (1855).

    Article  Google Scholar 

  45. D.P. Gaver and J.B. Grotberg, J. Fluid Mech. 235, 399 (1992).

    Article  CAS  Google Scholar 

  46. J. Stichlmair and J.R. Fair, Distillation: Principles and Practices (Wiley, New York, 1998).

    Google Scholar 

  47. From example data used in the following: P.A. Rock, Chemical Thermodynamics (University Science Books, Sausalito, CA, 1983).

    Google Scholar 

  48. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, Boston, MA, 1990).

    Google Scholar 

  49. D.J. Taylor and D.P. Birnie, III, Chem. Mater. (2000, submitted for publication).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunbar P. Birnie III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birnie, D.P. Rational solvent selection strategies to combat striation formation during spin coating of thin films. Journal of Materials Research 16, 1145–1154 (2001). https://doi.org/10.1557/JMR.2001.0158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0158

Navigation