Skip to main content
Log in

New combustion synthesis technique for the production of (InxGa1−x)2O3 powders: Hydrazine/metal nitrate method

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new low-temperature method to produce (InxGa1−x)2O3 (x = 0.1, 0.2, and 0.3) powders with high purity, high chemical homogeneity and improved crystallinity in the as-synthesized state has been developed. This procedure produced finely divided powders through an exothermic reaction between the precursors. The process starts with aqueous solutions of In(NO3)3 and Ga(NO3)3 as the precursors and hydrazine as the (noncarbonaceous) fuel. The combustion reaction occurred when heating the precursors between 150 and 200 °C in a closed vessel filled with an inert gas (Ar), which yields (InxGa1−x)2O3 directly. These materials were compared with powders prepared by a more typical combustion synthesis reaction between nitrates and a carbonaceous fuel at a higher ignition temperature of 500 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Srite and H. Morkoc, J. Vac. Sci. Technol. B 10(4), 1237 (1992).

  2. F.A. Ponce and D.P. Bour, Nature 386, 351 (1997).

    Article  CAS  Google Scholar 

  3. V. Hlavacek and J.A. Puszynski, Ind. Eng. Chem. Res. 35, 349 (1996).

    Article  CAS  Google Scholar 

  4. K.R. Venkatachari, D. Huang, S.P. Ostrander, W.A. Schulze, J. Mater. Res. 10, 748 (1995).

    Article  CAS  Google Scholar 

  5. H.C. Yi and J.J. Moore, J. Mater. Sci. 25, 1159 (1990).

    Article  CAS  Google Scholar 

  6. D. Huang, K.R. Venkatachari, and G.C. Stangle, J. Mater. Res. 10, 762 (1995).

    Article  CAS  Google Scholar 

  7. K. Kourtakis, M. Robbins, P.K. Gallagher, and T. Tiefel, J. Mater. Res. 4, 1289 (1989).

    Article  CAS  Google Scholar 

  8. Y. Zhang and G.C. Stangle, J. Mater. Res. 9, 1997 (1994).

    Article  CAS  Google Scholar 

  9. J. McKittrick, E.J. Bosze, C.F. Bacalski, and L.E. Shea, The Minerals, Metals & Materials Society 1, 139 (1999).

    Google Scholar 

  10. J.J. Kingsley and K.C. Patil, Mater. Lett. 6, 427 (1988).

    Article  CAS  Google Scholar 

  11. S. Ekambaram and K.C. Patil, J. Mater. Chem. 5, 905 (1995).

    Article  CAS  Google Scholar 

  12. S.R. Jain, K.C. Adiga, and V.R. Pai Verneker, Combustion and Flame 40, 71 (1981).

    Article  CAS  Google Scholar 

  13. L.F. Audrieth and B. Ackerson Ogg, The Chemistry of Hydrazine (John Wiley & Sons, Inc., New York, 1951), p. 100.

  14. E.J. Bosze, J. McKittrick, G.A. Hirata, and L.E. Shea, J. Electrochem. Soc. 99–40, 174 (2000).

    Google Scholar 

  15. D.D. Wagman, J. Phys. Chem. Ref. Data 11(2), 129 (1982).

  16. M.W. Chase, J. Phys. Chem. Ref. Data, 14(1), 156 (1985).

  17. I. Barin and G. Platzki, Thermochemical Data of Pure Substances, (VCH, New York, 1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

GarcÍa, R., Hirata, G.A. & McKittrick, J. New combustion synthesis technique for the production of (InxGa1−x)2O3 powders: Hydrazine/metal nitrate method. Journal of Materials Research 16, 1059–1065 (2001). https://doi.org/10.1557/JMR.2001.0147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0147

Navigation