Skip to main content
Log in

Effect of process variables on the structure, residual stress, and hardness of sputtered nanocrystalline nickel films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanocrystalline nickel films of about 0.1 μm thickness grown by sputtering with and without substrate bias possessed average grain sizes of 9–25 nm. Variation in substrate bias at room and liquid nitrogen temperature of deposition strongly affected grain structure and size distribution. Qualitative studies of film surfaces showed variation in roughness and porosity level with substrate bias and film thickness (maximum of 8 μm). The films had tensile residual stress, which varied with deposition conditions. The hardness values were much higher than those of coarse-grained nickel but decreased with an increase in the film thickness because of grain growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. Sanders, J.A. Eastman, and J.R. Weertman, Acta Mater. 45, 4019 (1997).

    Article  CAS  Google Scholar 

  2. J.R. Weertman, D. Farkas, K. Hemker, H. Kung, M. Mayo, R. Mitra, and H. VanSwygenhoven, MRS Bull. 24(2), 44 (1999).

  3. B.R. Elliot, Ph.D. Dissertation, Northwestern University, Evanston, IL (December 1998).

  4. M. Zupan, M. Legros, B.R. Elliott, and K.J. Hernker, in Advanced Materials for the 21st Century: The JuliaR. Weertman Symposium, edited Y-W. Chung, D.C. Dunand, P.K. Liaw, and G.B. Olson (TMS, Warrendale, PA, 1999), p. 525.

  5. R. Birringer, H. Gleiter, H-P. Klein, and P. Marquardt, Phys. Lett. 102A, 365 (1984).

    Article  CAS  Google Scholar 

  6. R. Mitra, T. Ungar, T. Morita, P.G. Sanders, and J.R. Weertman, in Advanced Materials for the 21st Century: The 1999 Julia R. Weertman Symposium, edited by Y-W. Chung, D.C. Dunand, P.K. Liaw, and G.B. Olson (TMS, Warrendale, PA, 1999), p. 553.

  7. S.R. Agnew, B.R. Elliott, C.J. Youngdahl, K.J. Hemker, and J.R. Weertman, in Modeling of Structure and Mechanics of Materials from Microscale to Product, edited by. J.V. Carstensen, T. Leffers, T. Lorentzen, O.B. Pedersen, B.F. Sørensen, and G. Winther (Risø National Laboratory, Roskilde, Denmark, 1998), p. 1.

  8. A.M. EI-Sherik, U. Erb, G. Palumbo, and K.T. Aust, Scripta Metall. Mater. 27, 1185 (1992).

    Article  Google Scholar 

  9. F. Ebrahimi, G.R. Bourne, M.S. Kelly, and T.E. Matthews, Nanostruct. Mater. 11, 343 (1999).

    Article  CAS  Google Scholar 

  10. K.T. Aust, Can. Metall. Quart. 34, 165 (1994).

    Google Scholar 

  11. D.G. Morris and M.A. Morris, Acta Metall. Mater. 39, 1763 (1991).

    Article  CAS  Google Scholar 

  12. H. Hahn and R.S. Averback, J. Appl. Phys. 67, 1113 (1990).

    Article  CAS  Google Scholar 

  13. G.M. Chow and A.S. Edelstein, Nanostr. Mater. 1, 107 (1992).

    Article  CAS  Google Scholar 

  14. J.B. Savader, M.R. Scanlon, R.C. Carnrnarata, D.T. Smith, and C. Heyzelden, Scripta Metall. 36, 29 (1997).

    Article  CAS  Google Scholar 

  15. A. Misra and M. Nastasi, J. Mater. Res. 14, 4466 (1999).

    Article  CAS  Google Scholar 

  16. J. Musil and F. Regent, J. Vac. Sci. Technol. A 16, 3301 (1998).

    Article  CAS  Google Scholar 

  17. M.N. Rittner, J.A. Eastman, and J.R. Weertman, Scripta Metall. Mater. 31, 841 (1994).

    Article  CAS  Google Scholar 

  18. F.A. Doljack and R.W. Hoffman, Thin Solid Films 12, 71 (1972).

    Article  CAS  Google Scholar 

  19. H.T.G. Hentzell, B. Anderson, and S-E. Karlsson, Acta Metall. 31, 2103 (1983).

    Article  CAS  Google Scholar 

  20. C.R.M. Grovenor, H.T.G. Hentzell, and D.A. Smith, Acta Metall. 32, 773 (1984).

    Article  CAS  Google Scholar 

  21. S.D. Dahlgren, W.L. Nicholson, M.D. Merz, W. Bollmann, J.F. Devlin, and R. Wang, Thin Solid Films 40, 345 (1977).

    Article  CAS  Google Scholar 

  22. D.M. Mattox and G.J. Kominiak, J. Vac. Sci. Technol. 9, 528 (1972).

    Article  CAS  Google Scholar 

  23. R.D. Bland, G.J. Kominiak, and D.M. Mattox, J. Vac. Sci. Tech. 11, 671 (1974).

    Article  CAS  Google Scholar 

  24. R.F. Bunshah, Vacuum 20, 353 (1977).

    Article  Google Scholar 

  25. K.N. Tu, in Treatise on Materials Science and Technology, Vol. 24: Preparation and Properties of Thin Films, edited by. K.N. Tu and R. Rosenberg (Academic Press, New York, 1982), p. 237.

  26. L.I. Maissel, in Handbook of Thin Film Technology, edited by L.I. Maissel and R. Glang, (McGraw Hill, New York, 1983), p. 1.

  27. E.S. Machlin, Materials Science in Microelectronics: The relationships between thin film processing and structure (Giro Press, Carton-on-Hudson, NY, 1995) p. 157.

  28. R. Abermann, Vacuum 41, 1279 (1990).

    Article  Google Scholar 

  29. M.F. Doerner and W.D. Nix, CRC Crit. Rev. Solid State Mater. Sci. 14, 225 (1988).

    Article  CAS  Google Scholar 

  30. B.A. Movchan and A.V. Demshishin, Fiz. Met. Metalloved. 28, 653 (1969).

    CAS  Google Scholar 

  31. J.A. Thornton, J. Vac. Sci. Techol. 11, 666 (1974).

    Article  CAS  Google Scholar 

  32. G.G. Stoney, Proc. Roy. Soc. London A82, 172 (1909).

    Google Scholar 

  33. P.L. Gai, E.I. Du Pont De Nemours and Company (Inc.), Wilmington, DE (private communication).

  34. R.A. Schwarzer, in Trends and New Applications of Thin Films, edited by H. Hoffman (Trans Tech, Uetikon-Zuerich, Switzerland., 1998); Mater. Sci. Forum 287288, 38 (1998).

    Google Scholar 

  35. C.C. Wong, H.I. Smith, and C.V. Thompson, Appl. Phys. Lett. 48, 335 (1986).

    Article  CAS  Google Scholar 

  36. Powder Diffraction File, Card No. 4-850 Inorganic Phases, JCPDS International Centre for Diffraction Data, (Swarthmore, PA, 1989).

  37. J.A. Thornton, Ann. Rev. Mater. Sci. 7, 239 (1977).

    Article  CAS  Google Scholar 

  38. A. Misra and M. Nastasi, Appl. Phys. Lett. 75, 3123 (1999).

    Article  CAS  Google Scholar 

  39. E.M. Zielinski, R.P. Vinci, and J.C. Bravman, J. Appl. Phys. 76, 4516 (1994).

    Article  CAS  Google Scholar 

  40. C.V. Thompson, Ann. Rev. Mater. Sci. 20, 245 (1990).

    Article  CAS  Google Scholar 

  41. E.B. Haugen, Probabilistic Approaches to Design (John Wiley and Sons, New York, 1968), p.47.

  42. A. Misra, S. Fayeulle, H. Kung, T.E. Mitchell, and M. Nastasi, Appl. Phys. Lett., 73, 891 (1998).

    Article  CAS  Google Scholar 

  43. J.A. Thornton, J. Vac. Sci. Tech. A 4, 3059 (1986).

    Article  CAS  Google Scholar 

  44. M.Y. Fuks, L.S. Palatnik, A.A. Koz’ma, A.A. Nechitaylo, and O.N. Grigor’yev, Fiz. Metal. Metalloved. 28, 645 (1969).

    CAS  Google Scholar 

  45. R. Mitra, W.A. Chiou, J.R. Weertman, and R. Hoffman, in Proc. Microscopy and Microanalysis, edited by G.W. Bailey, W.G. Jerome, S. McKernan, J.F. Mansfield and R.L. Price (Springer Verlag, NY, 1999), Vol. 5, Suppl. 2, p. 834.

  46. K.L. Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1969), p. 137.

  47. P. Wang, D.A. Thompson, and W.W. Smeltzer, Nucl. Inst. Meth. Phy. Res. 87/8, 97 (1985).

    Article  Google Scholar 

  48. P. Wang, D.A. Thompson, and W.W. Smeltzer, Nucl. Inst. Meth. Phy. Res. B16, 288 (1986).

    Article  CAS  Google Scholar 

  49. H.A. Atwater, C.V. Thompson,, and H.I. Smith, J. Appl. Phys. 62, 2337 (1988).

    Article  Google Scholar 

  50. J.C. Liu, J. Li, and J.W. Mayer, in Processing and Characterization of Materials Using Ion Beams, edited by L.E. Rehn, J. Greene, and F.A. Smidt (Mater. Res. Soc. Symp. Proc. 128, Pittsburgh, PA, 1989), pp. 297–302.

  51. J.A. Thornton, Thin Solid Films 40, 335 (1977).

    Article  CAS  Google Scholar 

  52. H.F. Winters and E. Kay, J. Appl. Phys. 38, 3928 (1967).

    Article  CAS  Google Scholar 

  53. B.J. Garrison and N. Winograd, J. Vac. Sci. Tech. 16, 789 (1979).

    Article  CAS  Google Scholar 

  54. K.C. Thompson-Russell and J.W. Edington, Electron Microscope Specimen Preparation Techniques in Materials Science, Philips Technical Laboratory Monographs in Practical Electron Microscopy in Materials Science [(N.V. Philips’) Gloeilampenfabrieken, Eindhoven, The Netherlands, 1977], Vol. 5, pp. 13,14.

  55. L. Eckertova, Physics of Thin Films (Plenum Press, New York, 1986), Chap. 4, p. 96.

  56. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys (Chapman and Hall, London, United Kingdom, 1991), Chap. 3, p. 110.

  57. O. Beeck, Advan. Catalysis 2, 151 (1950).

    CAS  Google Scholar 

  58. D. Brennan, D.O. Hayward, and B.M.W. Trapnell, Proc. Roy. Soc. London A256, 81 (1960).

    Google Scholar 

  59. P.G. Sanders, Ph.D. Dissertation, Northwestern University, Evanston, IL (1996).

  60. A.L. Shull and F. Spaepen, J. Appl. Phys. 80, 6243 (1996).

    Article  CAS  Google Scholar 

  61. W.D. Nix and B.M. Clemens, J. Mater. Res. 14, 3467 (1999).

    Article  CAS  Google Scholar 

  62. R.W. Hoffman, Thin Solid Films 34, 185 (1976).

    Article  CAS  Google Scholar 

  63. J. Weertman and J.R. Weertman, Elementary Dislocation Theory, Macmillan Series in Materials Science (Collier-Macmillan, Toronto, Canada,1964), Chap. 6, p. 168.

  64. R.L. Fleischer, in The Strengthening of Metals, edited by D. Peckner (Reinhold Press, New York, 1964), p. 93.

  65. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials (John Wiley and Sons, New York, 1989), Chap. 1, p.3.

  66. E. Klokholm and B.S. Berry, J. Electrochem. Soc. 115, 823 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, R., Hoffman, R.A., Madan, A. et al. Effect of process variables on the structure, residual stress, and hardness of sputtered nanocrystalline nickel films. Journal of Materials Research 16, 1010–1027 (2001). https://doi.org/10.1557/JMR.2001.0142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0142

Navigation