Skip to main content
Log in

Preferential growth mechanism of REBa2Cu3Oy (RE = Y, Nd) crystal on MgO substrate by liquid phase epitaxy

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Growth of the REBa2Cu3Oy (REBCO, RE = Y, Nd) crystals on the MgO substrates by the liquid phase epitaxy (LPE) process was investigated to clarify the growth mechanism. The crystal orientation of in-plane alignment was improved during the LPE process due to the preferential dissolution and growth even from a polycrystalline seed film. The orientation of preferential growth depended on the kind of RE for the REBCO system. The phenomena could be explained by the coarsening model by introducing the difference in the interfacial energies, which were considered not only general lattice matching but the Coulomb force at the interface between the REBCO and the MgO crystals. The preferential growth model was developed, and the calculation results showed a good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Bednorz and K.A. Muller, Z. Phys. B 64, 189 (1986).

    Article  CAS  Google Scholar 

  2. T. Hato, H. Aso, Y. Ishimaru, A. Yoshida, and N. Yokoyama, in Advances in Superconductivity XI, edited by N. Koshizuka and S. Tajima (Springer-Verlag, Tokyo, Japan, 1999), p. 1155.

  3. W. Hattori, T. Yoshitake, and S. Tahara, in Advances in Superconductivity XI, edited by N. Koshizuka and S. Tajima (Springer-Verlag, Tokyo, Japan, 1999), p. 1263.

  4. M. Becht, J.G. Wen, F.M. Saba, S. Miura, and K. Tanabe, in Advances in Superconductivity XI, edited by N. Koshizuka and S. Tajima (Springer-Verlag, Tokyo, Japan, 1999), p. 1075.

  5. B.F. Belt, J. Ings, and G. Diercks, Appl. Phys. Lett. 56, 1805 (1990).

    Article  CAS  Google Scholar 

  6. L.H. Perng, T.S. Chin, K.C. Chen, and C.H. Lin, Supercond. Sci. Technol. 3, 233 (1990).

    Article  CAS  Google Scholar 

  7. C. Dubs, K. Fischer, and P. Gornert, J. Cryst. Growth 123, 611 (1992).

    Article  CAS  Google Scholar 

  8. C. Klemenz and H.J. Sheel, J. Cryst. Growth 129, 421 (1993).

    Article  CAS  Google Scholar 

  9. Y. Ishida, T. Kimura, K. Kakimoto, Y. Yamada, Z. Nakagawa, Y. Shiohara, and A.B. Sawaoka, Physica C 292, 264 (1997).

    Article  CAS  Google Scholar 

  10. K. Kakimoto, Y. Ishida, T. Kimura, and Y. Shiohara, in Advances in Superconductivity X, edited by K. Osamura and I. Hirabayashi (Springer-Verlag, Tokyo, Japan, 1998), p. 1037.

  11. S. Miura, K. Hashimoto, F. Wang, Y. Enomoto, and T. Morishita, Physica C 278, 201 (1997).

    Article  CAS  Google Scholar 

  12. H.J. Scheel, C. Klementz, and F.K. Reinhalt, Appl. Phys. Lett. 65, 901 (1994).

    Article  CAS  Google Scholar 

  13. X. Yao, K. Nomura, T. Izumi, and Y. Shiohara, in Extended Abstracts, 2000 International Workshop on Superconductivity, Shimane, Japan (ISTEC, Tokyo, Japan, 2000), p. 78.

  14. S. Hoshi, K. Nomura, A. Hayashi, T. Izumi, and Y. Shiohara, in Extended Abstracts, 1999 International Workshop on Superconductivity, Kauai Island, Hawaii (ISTEC, Tokyo, Japan, 1999), p. 74.

  15. K. Nomura, S. Hoshi, X. Yao, Y. Nakamura, T. Izumi, and Y. Shiohara, J. Japan Inst. Metals 64, 323 (2000).

    Article  CAS  Google Scholar 

  16. K. Kakimoto, Y. Sugawara, T. Izumi, and Y. Shiohara, Physica C 334, 249 (2000).

    Article  CAS  Google Scholar 

  17. D.M. Hwang, T.S. Ravi, R. Ramesh, S.W. Chan, C.Y. Chen, L. Nazar, X.D. Wu, A. Inam, and T. Venkatesan, Appl. Phys. Lett. 57, 1690 (1990).

    Article  CAS  Google Scholar 

  18. S. Yuhya, K. Kikuchi, and Y. Shiohara, J. Mater. Res. 7, 2673 (1992).

    Article  CAS  Google Scholar 

  19. J. Tsujino, N. Tatsumi, and Y. Shiohara, Physica C 235, 583 (1994).

    Article  Google Scholar 

  20. Y. Yamada and Y. Shiohara, Physica C 217, 182 (1993).

    Article  CAS  Google Scholar 

  21. W.W. Mullins, Metal Surfaces-Structure, Energetics, Kinetics (ASM, Metals Park, OH, 1963), p. 17.

  22. R. Trivedi, Lectures on the Theory of Phase Transformations, edited by H.I. Aaronson (Trans. Metall. Soc. AIME, New York, 1975), p. 51.

  23. W. Bollmann, Crystal Defects and Crystalline Interfaces (Springer-Verlag, New York, 1970).

  24. W. Bollmann, Crystal Lattices, Interface, Matrices (W. Bollmann, Geneva, 1982).

  25. M.L. Kronberg and F.H. Wilson, Metall. Trans. 185, 501 (1949).

    Google Scholar 

  26. JCPDS, Card No. 391496, Powder Diffraction File (International Center for Diffraction Data, PA, 1999).

  27. JCPDS, Card No. 470302, Powder Diffraction File (International Center for Diffraction Data, PA, 1999).

  28. JCPDS, Card No. 450946, Powder Diffraction File (International Center for Diffraction Data, PA, 1999).

  29. J.D. Jorgensen, M.A. Beno, D.G. Hinks, L. Soderholm, K.J. Volin, C.U. Segre, K. Zhang, and M.S. Kleefisch, Phys. Rev. B 36, 3608 (1987).

    Article  CAS  Google Scholar 

  30. W. Marti, F. Altorfer, and P. Fischer, Physica C 206, 158 (1993).

    Article  CAS  Google Scholar 

  31. T. Izumi, K. Kakimoto, K. Nomura, and Y. Shiohara, J. Cryst. Growth 219, 228 (2000).

    Article  CAS  Google Scholar 

  32. J.G. Wen, C. Traeholt, and H.W. Zandbergen, Physica C 205, 354 (1993).

    Article  CAS  Google Scholar 

  33. L. Pauling, The Nature of the Chemical Bond, 3rd ed. (Cornell University Press, Ithaca, NY, 1960).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nomura, K., Hoshi, S., Yao, X. et al. Preferential growth mechanism of REBa2Cu3Oy (RE = Y, Nd) crystal on MgO substrate by liquid phase epitaxy. Journal of Materials Research 16, 979–989 (2001). https://doi.org/10.1557/JMR.2001.0138

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0138

Navigation