Skip to main content
Log in

Grain growth behavior of a nanostructured 5083 Al–Mg alloy

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A nanostructured 5083 Al–Mg alloy powder was subjected to various thermal heat treatments in an attempt to understand the fundamental mechanisms of recovery, recrystallization and grain growth as they apply to nanostructured materials. A low-temperature stress relaxation process associated with reordering of the grain boundaries was found to occur at 158 °C. A bimodal restructuring of the grains occurred at 307 °C for the unconstrained grains and 381 °C for the constrained grains. An approximate activation energy of 5.6 kJ/mol was found for the metastable nanostructured grains, while an approximate activation energy of 142 kJ/mol was found above the restructuring temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Handbook of Nanostructured Materials and Nanotechnology, edited by H.S. Nalwa (Academic Press, San Diego, CA, 2000).

  2. C. Suryanarayana, Int. Mat. Rev. 40, 41 (1995).

    Article  CAS  Google Scholar 

  3. H. Gleiter, Prog. in Mater. Sci. 33, 223 (1989).

    Article  CAS  Google Scholar 

  4. J. Weissmuller, in Synthesis and Processing of Nanocrystalline Powder, edited by D.L. Bourell (TMS, Warrendale, PA, 1996).

  5. R. Perez, B. Huang, and E.J. Lavernia, Nanostruct. Mater. 7, 56 (1996).

    Google Scholar 

  6. R. Perez, H.G. Jiang, and E.J. Lavernia, Nanostruct. Mater. 9, 7 (1997).

    Article  Google Scholar 

  7. H.G. Jiang, M.L. Lau, and E.J. Lavernia, Nanostruct. Mater. 10, 169 (1998).

    Article  CAS  Google Scholar 

  8. R.J. Perez, H.G. Jiang, C.P. Dogan, and E.J. Lavernia, Metall. Trans. A 29A, 2469 (1998).

    Article  CAS  Google Scholar 

  9. B. Huang, R.J. Perez, H. Hu, and E.J. Lavernia, Mater. Sci. Eng. A 255, 124 (1998).

    Article  Google Scholar 

  10. W.D. Callister, Jr., Materials Science and EngineeringAn Introduction, 3rd ed. (John Wiley & Sons, New York, 1994), pp. 168–174.

  11. H.J. Fecht, E. Hellstern, Z. Fu, and W.L. Johnson, Metall. Trans. A 21A, 2333 (1990).

    Article  CAS  Google Scholar 

  12. B-L. Huang and E.J. Lavernia, J. Mater. Syn. Proc. 3, 1 (1995).

    Google Scholar 

  13. C.C. Koch, Ann. Rev. Mater. Sci. 19, 121 (1989).

    Article  CAS  Google Scholar 

  14. C.C. Koch, Nanostruct. Mater. 2, 109 (1993).

    Article  CAS  Google Scholar 

  15. M.J. Luton, C.S. Jayanth, M.M. Disko, S. Matras, and J. Vallone, in Multicomponent Ultrafine Microstructures, edited by L.E. McCandlish, D.E. Polk, R.W. Siegel, and B.H. Kear (Mat. Res. Soc. Symp. Proc., 132, Pittsburgh, PA, 1989), pp. 79–86.

  16. O. Susegg, E. Hellum, A. Olsen, and M.J. Luton, Phil. Mag. A, 68, 367 (1993).

    Article  CAS  Google Scholar 

  17. T. R. Malow and C.C. Koch, in Synthesis and Processing of Nanocrystalline Powder, edited by D.L. Bourell (TMS, Warrendale, PA, 1996).

  18. V.G. Gryaznov and L.I. Trusov, Prog. in Mater. Sci. 37, 289 (1993).

    Article  CAS  Google Scholar 

  19. E.A. Brandes, Smithell’s Metals Reference Book (Butterworth-Heinemann, London, United Kingdom, 1992).

    Google Scholar 

  20. B.D. Cullity, Elements of X-ray Diffraction, (Addison-Wesley, Reading, MA, 1978), p. 101.

  21. C.E. Krill and R. Birringer, Philos. Mag. A 77, 621 (1997).

    Article  Google Scholar 

  22. T. Ozawa, J. Therm. Anal. 2, 301 (1970).

    Article  CAS  Google Scholar 

  23. J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon, Acta Mater. 44, 2973 (1996).

    Article  CAS  Google Scholar 

  24. H.P. Klug and L.E. Alexander, X-ray Diffraction Procedures (John Wiley & Sons, New York, 1974), pp. 661–665.

  25. Y. Li, S.R. Nutt, and F.A. Mohamed, Acta Mater. 45, 2607 (1997).

    Article  CAS  Google Scholar 

  26. J. Weissmuller, J. Loffler, and M. Kleber, Nanostruct. Mater. 6, 105 (1995).

    Article  Google Scholar 

  27. A. Tschope and R.J. Birringer, Appl. Phys. 71, 5391 (1992).

    Article  Google Scholar 

  28. X.Y. Qin, X.J. Wu, and L.F. Cheng, Nanostruct. Mater. 2, 99 (1993).

    Article  CAS  Google Scholar 

  29. C.E. Krill, R. Klein, S. Janes, and R. Birringer, Mater. Sci. Forum 179–181, 443 (1995).

  30. J. Weissmuller, NanoStructured Mat., 3, 261 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tellkamp, V.L., Dallek, S., Cheng, D. et al. Grain growth behavior of a nanostructured 5083 Al–Mg alloy. Journal of Materials Research 16, 938–944 (2001). https://doi.org/10.1557/JMR.2001.0133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0133

Navigation