Skip to main content
Log in

Residual stress in fiber-textured thin films of cubic materials

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of fiber texture on the x-ray residual stress analysis in thin films of cubic materials is discussed according to different mechanical models. The x-ray elastic constants (XECs) were calculated from single-crystal elastic constants for Cu, cubic ZrO2, and TiN, in the case of a typical [111] fiber texture with different spread of orientations [expressed by the half-width at half-maximum of the (111) pole figure]. Calculations were performed according to Reuss, Voigt, and Hill models, considering different crystallographic directions in cubic structures, in order to underline the effect of the mechanical anisotropy and fiber texture. The results clearly indicated the dependence of the XECs on the sample tilting angle, with the notable exception of [111] and [200], which were texture oscillation-free directions. Profiting from this condition the residual stress gradient in a fiber-textured TiN thin film deposited on stainless steel was determined by the simultaneous analysis of texture and residual strain for the (111) and (200) reflections. Advantages and limits of the procedure are discussed together with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.C. Noyan and J.B. Cohen, Residual Stress (Springer-Verlag, New York, 1987).

    Book  Google Scholar 

  2. V. Hauk, Structural and Residual Stress Analysis by Nondestructive Methods (Elsevier, Amsterdam, The Netherlands, 1997).

    Google Scholar 

  3. Residual Stress Measurement by X-ray Diffraction, SAE Information Report J784a, (Society of Automotive Engineers, Warrendale, PA, 1980).

  4. M.R. James and J.B. Cohen, Treatise on Materials Science and Technology (Academic Press, New York, 1980), Vol. 19A, p. 1.

    Google Scholar 

  5. A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929).

    Article  CAS  Google Scholar 

  6. W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928).

    Google Scholar 

  7. R. Hill, Proc. Phys. Soc. A65, 349 (1952).

    Article  Google Scholar 

  8. E. Kröner, Z. Physik 151, 504 (1958).

  9. B.M. Clemens and J.A. Bain, Mater. Res. Soc. Bull. 17, 46 (1992).

    Article  CAS  Google Scholar 

  10. S. Matthies, G.N. Vinel, and K. Helming, Standard Distributions in Texture Analysis (Akademie-Verlag, Berlin, 1987).

    Google Scholar 

  11. M. Barral, J.L. Lebrun, J.M. Sprauel, and G. Mader, Metall. Trans. A 18, 1229 (1987).

    Article  Google Scholar 

  12. C.M. Brakman, J. Appl. Cryst. 16, 325 (1983).

    Article  Google Scholar 

  13. P. Scardi, S. Setti, and M. Leoni, Mater. Sci. Forum 321–324, 62 (1999).

    Google Scholar 

  14. R-J. Roe, J. Chem. Phys. 40, 2608 (1964).

    Article  CAS  Google Scholar 

  15. R.P. Ingel and D. Lewis, J. Am. Ceram. Soc. 71, 265 (1988).

    Article  CAS  Google Scholar 

  16. J.O. Kim, J.D. Achenbach, P.B. Mirkarimi, M. Shinn, and S.A. Barnett, J. Appl. Phys. 72, 1805 (1992).

    Article  CAS  Google Scholar 

  17. R.F.S. Hearmon, Landolt-Börnstein 1, 1 (1966).

    Google Scholar 

  18. H. Dölle and V. Hauk, Z. Metallkde . 69, 410 (1978).

  19. P. Scardi, M. Leoni, and Y.H. Dong, Advances in X-ray Analysis 42, 429 (1999).

    Google Scholar 

  20. M. Leoni, P. Scardi, S. Rossi, L. Fedrizzi, and Y. Massiani, Thin Solid Films 345, 263 (1999).

    Article  CAS  Google Scholar 

  21. D.S. Rickerby, A.M. Jones, and B.A. Bellamy, Surf. Coat. Technol. 36, 661 (1988).

    Article  CAS  Google Scholar 

  22. R.Y. Fillit and A.J. Perry, Surf. Coat. Technol. 36, 647 (1988).

    Article  CAS  Google Scholar 

  23. J.E. Sundgren, Thin Solid Films 128, 21 (1985).

    Article  CAS  Google Scholar 

  24. D.B. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978).

    Google Scholar 

  25. P. Scardi, M. Leoni, and S. Veneri, Advances in X-ray Analysis 40 (1997). On CD-ROM.

  26. Y.H. Dong and P. Scardi, J. Appl. Cryst. 33, 184 (2000).

    Article  CAS  Google Scholar 

  27. P. Scardi, in Science and Technology of Thin Films, edited by F.C. Matacotta and G. Ottaviani (World Scientific Publishing Co., Singapore, 1995), p. 241.

    Book  Google Scholar 

  28. P. Scardi and Y.H. Dong, Mater. Sci. Forum 347–349, 399 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Scardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scardi, P., Dong, Y.H. Residual stress in fiber-textured thin films of cubic materials. Journal of Materials Research 16, 233–242 (2001). https://doi.org/10.1557/JMR.2001.0036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0036

Navigation