Skip to main content
Log in

Improvement of the crystallinity of GaN epitaxial layers grown on porous Si (100) layers by using a two-step method

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new approach was used for combining GaN and porous Si with the goal of producing high-quality GaN epitaxial layers for optoelectronic integrated circuit devices based on Si substrates. Reflection high-energy electron diffraction (RHEED), x-ray diffraction (XRD), photoluminescence (PL), and Van der Pauw–Hall effect measurements were performed to investigate the structural, optical, and electrical properties of the GaN epitaxial films grown on porous Si(100) by plasma-assisted molecular-beam epitaxy with a two-step method. The RHEED patterns were streaky with clear Kikuchi lines, which was direct evidence for layer-by-layer two-dimensional growth of GaN epitaxial layers on porous Si layers. The XRD curves showed that the grown layers were GaN(0001) epitaxial films. The results of the XRD and the PL measurements showed that the crystallinities of the GaN epilayers grown on porous Si by using a two-step growth were remarkably improved because the porous Si layer reduced the strains in the GaN epilayers by sharing them with the Si substrates. Hall-effect measurements showed that the mobility of the GaN active layer was higher than that of the GaN initial layer. These results indicate that high-quality GaN epitaxial films grown on porous Si(100) by using two-step growth hold promise for potential applications in new kinds of optoelectronic monolithic and ultralarge integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Amano, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys. 27, L1384 (1988).

    Article  CAS  Google Scholar 

  2. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys. 28, L2112 (1989).

    Article  CAS  Google Scholar 

  3. S. Nakamura, Y. Harada, and M. Senoh, Appl. Phys. Lett. 58, 2021 (1991).

    Article  CAS  Google Scholar 

  4. S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, Jpn. J. Appl. Phys. 31, L139 (1992).

    Article  CAS  Google Scholar 

  5. M.S. Brandt, N.M. Johnson, R.J. Molnar, T. Singh, and T.D. Moustakas, Appl. Phys. Lett. 64, 2264 (1994).

    Article  CAS  Google Scholar 

  6. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl. Phys. 34, L797 (1995).

    Article  CAS  Google Scholar 

  7. Z. Yang, L.K. Li, and W.I. Wang, Appl. Phys. Lett. 67, 1686 (1995).

    Article  CAS  Google Scholar 

  8. C.H. Qiu, C. Hoggatt, W. Melton, M.W. Leksono, and J.I. Pankove, Appl. Phys. Lett. 66, 2712 (1996).

    Article  Google Scholar 

  9. G.C. Yi and B.W. Wessels, Appl. Phys. Lett. 68, 3769 (1996).

    Article  CAS  Google Scholar 

  10. A.J. Fisher, W. Shan, J.J. Song, Y.C. Chang, R. Horning, and B. Goldenberg, Appl. Phys. Lett. 71, 1981 (1997).

    Article  Google Scholar 

  11. K. Domen, K. Horino, A. Kuramata, and T. Tanahashi, Appl. Phys. Lett. 71, 1996 (1997).

    Article  CAS  Google Scholar 

  12. S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992).

    Article  CAS  Google Scholar 

  13. H.D. Cho, N.H. Ko, S.H. Park, T.W. Kang, J.W. Han, K.S. Eom, S.H. Won, and K.S. Jung, J. Cryst. Growth 175, 125 (1997).

    Article  Google Scholar 

  14. T.L. Lin, L. Sadwick, K.L. Wang, Y.C. Kao, R. Hull, C.W. Nieh, D.N. Jamieson, and J.K. Liu, Appl. Phys. Lett. 51, 814 (1987).

    Article  CAS  Google Scholar 

  15. T.W. Kang, Y.T. Oh, J.Y. Leem, and T.W. Kim, J. Mater. Sci. Lett. 11, 392 (1992).

    Article  CAS  Google Scholar 

  16. Y.J. Mii, T.L. Lin, Y.C. Kao, B.J. Wu, K.L. Wang, C.W. Nieh, D.N. Jamieson, and J.K. Liu, J. Vac. Sci. Technol. B 6, 696 (1988).

    Article  CAS  Google Scholar 

  17. P.W. Hardenman, M.I.J Beale, D.B. Gassen, J.M. Keen, C. Pickering, and D.J. Robbins, Surf. Sci. 152, 1051 (1985).

    Article  Google Scholar 

  18. C.I. Harris, B. Monemar, H. Amano, and I. Akasaki, Appl. Phys. Lett. 67, 840 (1995).

    Article  CAS  Google Scholar 

  19. K. Naniwae, S. Itoh, H. Amano, K. Itoh, K. Hiramatsu, and I. Akasaki, J. Crystal Growth 99, 381 (1990).

    Article  CAS  Google Scholar 

  20. J. Cao, D. Pavlidis, A. Eisenbach, A. Philippe, C. Bru-Chevallier, and G. Guillot, Appl. Phys. Lett. 71, 3880 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, T.W., Park, S.H. & Kim, T.W. Improvement of the crystallinity of GaN epitaxial layers grown on porous Si (100) layers by using a two-step method. Journal of Materials Research 15, 2602–2605 (2000). https://doi.org/10.1557/JMR.2000.0373

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0373

Navigation