Skip to main content
Log in

Time-of-flight study of electrical charge mobilities in liquid-crystalline zinc octakis(β-octoxyethyl) porphyrin films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Time-of-flight measurements performed on micron-thick films of liquid-crystalline zinc octakis(β-octoxyethyl) porphyrin indicated that charge carriers possess significantly high drift mobilities, attaining approximately 0.01 cm2 V−1s −1 and 0.008 cm2 V−1s −1 for holes and electrons, respectively, at room temperature. Upon heating the samples from 300 to 420 K, causing the porphyrin to go from the solid-crystalline to the discotic mesophase, the mobilities did not decrease drastically, and remained at values slightly larger than half those observed at room temperature. Charge transport in this material conformed to the Scher–Montroll model, which attributes a distribution of hopping times to the propagation of the initially formed charged carrier packet. Analysis of the “universal” plots prescribed by this model yielded a dispersion factor of 0.5 for both charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Simon and J-J. André, Molecular Semiconductors (Springer Verlag, Berlin, Germany, 1985).

    Google Scholar 

  2. C.W. Tang, Appl. Phys. Lett. 48, 183 (1986).

    CAS  Google Scholar 

  3. D. Guay, R. Coté, R. Marques, J.P. Dodelet, M.F. Lawrence, D. Gravel, and C.H. Langford, J. Electrochem. Soc. 134, 2942 (1987).

    CAS  Google Scholar 

  4. T.J. Klofta, J. Danzinger, P. Lee, J. Pankow, K.W. Nebesny, and N.R. Armstrong, J. Phys. Chem. 91, 5646 (1987).

    CAS  Google Scholar 

  5. T.J. Klofta, T.D. Sims, J.W. Pankow, J. Danzinger, K.W. Nebesny, and N.R. Armstrong, J. Phys. Chem. 91, 5651 (1987).

    CAS  Google Scholar 

  6. T.D. Sims, J.E. Pemberton, P. Lee, and N.R. Armstrong, Chem. Mater. 1, 26 (1989).

    CAS  Google Scholar 

  7. L. Gastonguay, J.P. Dodelet, R. Coté, M.F. Lawrence, and D. Gravel, Can. J. Chem. 68, 202 (1991).

    Google Scholar 

  8. M.F. Lawrence, Z. Huang, C.H. Langford, and I. Ordonez, J. Phys. Chem. 97, 944 (1993).

    CAS  Google Scholar 

  9. Z. Huang, A. Ioannidis, and M.F. Lawrence, J. Phys. Chem. 97, 952 (1993).

    CAS  Google Scholar 

  10. K-Y. Law, Chem. Rev. 93, 449 (1993).

    CAS  Google Scholar 

  11. L.K. Chau, C. Arbour, G.E. Collins, K.W. Nebesny, P.A. Lee, C.D. England, N.R. Armstrong, and B.A. Parkinson, J. Phys. Chem. 97, 2690 (1993).

    CAS  Google Scholar 

  12. A. Ioannidis, M.F. Lawrence, H. Kassi, R. Coté, J.P. Dodelet, and R.M. Leblanc, Chem. Phys. Lett. 205, 46 (1993).

    CAS  Google Scholar 

  13. A. Ioannidis, M.F. Lawrence, R. Coté, H. Kassi, and J.P. Dodelet, Mol. Cryst. Liq. Cryst. 252, 195 (1994).

    Google Scholar 

  14. A. Schmidt, R. Schlaf, R. Louder, L-K. Chau, S-Y. Chen, T. Fritz, M.F. Lawrence, B.A. Parkinson, and N.R. Armstrong, Chem. Mater. 7, 2127 (1995).

    CAS  Google Scholar 

  15. J.J. Piet, J.M. Warman, and H.L. Anderson, Chem. Phys. Lett. 266, 70 (1997).

    CAS  Google Scholar 

  16. K.K. Jensen, S.B. van Berlekom, J. Kajanus, J. Martensson, and B. Albinsson, J. Phys. Chem. A 101, 2218 (1997).

    CAS  Google Scholar 

  17. A. Ioannidis and J.P. Dodelet, J. Phys. Chem. 101, 891 (1997).

    CAS  Google Scholar 

  18. A. Ioannidis and J.P. Dodelet, J. Phys. Chem. 101, 901 (1997).

    CAS  Google Scholar 

  19. A. Ioannidis and J.P. Dodelet, J. Phys. Chem. 101, 5100 (1997).

    CAS  Google Scholar 

  20. B.A. Gregg, M.A. Fox, and A.J. Bard, J. Am. Chem. Soc. 111, 3024 (1989).

    CAS  Google Scholar 

  21. B.A. Gregg, M.A. Fox, and A.J. Bard, J. Phys. Chem. 93, 4227 (1989).

    CAS  Google Scholar 

  22. B.A. Gregg, M.A. Fox, and A.J. Bard, J. Phys. Chem. 94, 1586 (1990).

    CAS  Google Scholar 

  23. P.G. Schouten, J.M. Warman, M.P. de Haas, M.A. Fox, and H-L. Pan, Nature 253, 736 (1991).

    Google Scholar 

  24. B.A. Gregg and Y.I. Kim, J. Phys. Chem. 98, 2412 (1994).

    CAS  Google Scholar 

  25. P.G. Schouten, J.M. Warman, M.P. de Haas, C.F. van Nostrum, G.H. Gelinck, R.J.M. Nolte, M.J. Copyn, J.W. Zwikker, M.K. Engel, M. Hanack, Y.H. Chang, and W.T. Ford, J. Am. Chem. Soc. 116, 6880 (1994).

    CAS  Google Scholar 

  26. A.M. van de Graats, J.M. Warman, K. Müller, Y. Geerts, and J.D. Brand, Adv. Mater. 10, 36 (1998).

    Google Scholar 

  27. W.E. Spear, J. Non-Cryst. Solids 1, 197 (1969).

    CAS  Google Scholar 

  28. R.C. Hughes, in Photoconductivity in Polymers: An Interdisciplinary Approach, edited by A.V. Patsis and D.A. Seanor (Technomic, Westport, CT, 1976), p. 158.

    Google Scholar 

  29. H. Scher and E.W. Montroll, Phys. Rev. B 12, 2455 (1975).

    CAS  Google Scholar 

  30. J.C. Scott, L.T. Pautmeier, and L.B. Schein, Phys. Rev. B 46, 8603 (1992).

    CAS  Google Scholar 

  31. P.M. Borsenberger, E.H. Magin, M. van der Auweraer, and F.C. deSchryver, Phys. Status Solidi A 140, 9 (1993).

    CAS  Google Scholar 

  32. H. Bässler, Phys. Status Solidi B 175, 16 (1993).

    Google Scholar 

  33. H. Bässler, Mol. Cryst. Liq. Cryst. 252, 11 (1994).

    Google Scholar 

  34. M. Redecker, D.D.C. Bradley, M. Inbasekaran, W.W. Wu, and E.P. Woo, Adv. Mater. 11, 241 (1999).

    CAS  Google Scholar 

  35. M.E. Scharfe, Phys. Rev. B 2, 5025 (1970).

    Google Scholar 

  36. D.M. Pai and M.E. Scharfe, J. Non-Cryst. Solids 8, 752 (1972).

    Google Scholar 

  37. M.E. Scharfe, Bull. Am. Phys. Soc. 18, 454 (1973).

    Google Scholar 

  38. H. Scher and E.W. Montroll, Phys. Rev. B 1, 4491 (1973).

    Google Scholar 

  39. J. Mort and A.I. Lakatos, J. Non-Cryst. Solids 4, 117 (1970).

    CAS  Google Scholar 

  40. H. Scher, in Amorphous and Liquid Simiconductors, edited by J. Stuke and W. Brenig (Taylor and Francis, London, United Kingdom, 1974), p. 135.

    Google Scholar 

  41. G. Pfister, Phys. Rev. Lett. 33, 1474 (1974).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus F. Lawrence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Y., Gregg, B.A. & Lawrence, M.F. Time-of-flight study of electrical charge mobilities in liquid-crystalline zinc octakis(β-octoxyethyl) porphyrin films. Journal of Materials Research 15, 2494–2498 (2000). https://doi.org/10.1557/JMR.2000.0358

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0358

Navigation