Skip to main content
Log in

Chemical vapor deposition of titanium nitride thin films from tetrakis(dimethylamido)titanium and hydrazine as a coreactant

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hydrazine was used as a coreactant with tetrakis(dimethylamido)titanium for the low-temperature chemical vapor deposition of TiN between 50 and 200 °C. The TiN film-growth rates ranged from 5 to 45 nm/min. Ti:N ratios of approximately 1:1 were achieved. The films contain between 2 and 25 at.% carbon, as well as up to 36 at.% oxygen resulting from diffusion after air exposure. The resistivity of these films is approximately 104 μΩ cm. Annealing the films in ammonia enhances their crystallinity. The best TiN films were produced at 200 °C from a 2.7% hydrazine–ammonia mixture. The Ti:N ratio of these films is approximately 1:1, and they contain no carbon or oxygen. These films exhibit the highest growth rates observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Toth, Transition Metal Carbides and Nitrides (Academic Press, New York, 1971), pp. 4–7.

    Google Scholar 

  2. S.T. Oyama, in The Chemistry of Transition Metal Carbides and Nitrides, edited by S.T. Oyama (Chapman and Hall, London, 1996), pp. 1–14.

    Chapter  Google Scholar 

  3. H.O. Pierson, Handbook of Chemical Vapor Deposition: Principles, Technology and Applications (Noyes Publications, Park Ridge, NJ, 1992), pp. 353–355.

    Google Scholar 

  4. T.E. Hale, in Ceramic Films and Coatings, edited by J.B. Wachtman and R.A. Haber (Noyes Publications, NJ, 1993), p. 27.

    Google Scholar 

  5. S-Q. Wang, Mater. Res. Soc. Bull. 19, 30 (1994).

    Article  CAS  Google Scholar 

  6. P. Singer, Semiconductor International, August 1994, Vol. 17, p. 57.

    CAS  Google Scholar 

  7. M. Eizenberg, Mater. Res. Soc. Bull. 20, 38 (1995).

    Article  CAS  Google Scholar 

  8. R.F. Bunshah, in Handbook of Deposition Technologies for Films and Coatings: Science, Technology and Applications, edited by R.F. Bunshah (Noyes Publications, Park Ridge, NJ, 1992), pp. 20–22.

    Google Scholar 

  9. R. Leutenecker, B. Froschle, U. Cao-Minh, and P. Ramm, Thin Solid Films 270, 621 (1995).

    Article  CAS  Google Scholar 

  10. M. Eizenberg, in Advanced Metallization for Future ULSI, edited by K.N. Tu, J.W. Mayer, J.M. Poate, and L.J. Chen (Mater. Res. Soc. Symp. Proc. 427, Pittsburgh, PA, 1996), p. 325.

  11. K. Sugiyama, P. Sangryul, Y. Takahashi, and S. Motojima, J. Electrochem. Soc. 122, 1545 (1975).

    Article  CAS  Google Scholar 

  12. R.M. Fix, R.G. Gordon, and D.M. Hoffman, Chem. Mater. 2, 235 (1990).

    Article  CAS  Google Scholar 

  13. R.M. Fix, R.G. Gordon, and D.M. Hoffman, Chem. Mater. 3, 1138 (1991).

    Article  CAS  Google Scholar 

  14. J.M. Musher and R.G. Gordon, J. Mater. Res. 11, 989 (1996).

    Article  CAS  Google Scholar 

  15. J.M. Musher and R.G. Gordon, J. Electrochem. Soc. 143, 736 (1996).

    Article  CAS  Google Scholar 

  16. D.M. Hoffman, Polyhedron 13, 1169 (1994).

    Article  CAS  Google Scholar 

  17. L.H. Dubois, B.R. Zegarski, and G.S. Girolami, J. Electrochem. Soc. 139, 3603 (1994).

    Article  Google Scholar 

  18. J.A. Prybyla, C-M. Chiang, and L.H. Dubois, J. Electrochem. Soc. 140, 2695 (1993).

    Article  CAS  Google Scholar 

  19. L.H. Dubois, Polyhedron 13, 1329 (1994).

    Article  CAS  Google Scholar 

  20. I.J. Raaijmakers, Thin Solid Films 247, 85 (1994).

    Article  CAS  Google Scholar 

  21. I.J. Raaijmakers, and J. Yang, Appl. Surf. Sci. 73, 31 (1993).

    Article  CAS  Google Scholar 

  22. A. Katz, A. Feingold, S.J. Pearton, S. Nakahara, M. Ellington, U.K. Chakrabarti, M. Geva, and E. Lane, J. Appl. Phys. 70, 3666 (1991).

    Article  CAS  Google Scholar 

  23. A. Katz, A. Feingold, S. Nakahara, S.J. Pearton, E. Lane, M. Geva, F.A. Stevie, and K. Jones, J. Appl. Phys. 15, 993 (1992).

    Article  Google Scholar 

  24. A. Paranjpe and M. IslamRaja, J. Vac. Sci. Technol. B 13, 2105 (1995).

    Article  CAS  Google Scholar 

  25. S.C. Sun and M.H. Tsai, Thin Solid Films 253, 440 (1994).

    Article  CAS  Google Scholar 

  26. D. Kim, J.J. Kim, J.W. Park, and J.J. Kim, J. Electrochem. Soc. 143, L188 (1996).

    Article  CAS  Google Scholar 

  27. A. Intemann, H. Koerner, and F. Koch, J. Electrochem. Soc. 140, 3215 (1993).

    Article  CAS  Google Scholar 

  28. M. Eizenberg, L. Littau, S. Ghanayem, A. Mak, Y. Maeda, M. Chang, and A.K. Sinha, Appl. Phys. Lett. 65, 2416 (1994).

    Article  CAS  Google Scholar 

  29. J. Baliga, Semiconductor International, March 1997, Vol. 20, p. 76.

    Google Scholar 

  30. T. Gerfin and K-H. Dahmen, in CVD of Nonmetals, edited by W.S. Rees, Jr. (VCH Publishers, New York, 1996), pp. 155–158.

    Google Scholar 

  31. T.S. Lewkebandara, P.H. Sheridan, M.J. Heeg, A.L. Rheingold, and C.H. Winter, Inorg. Chem. 33, 5879 (1994).

    Article  CAS  Google Scholar 

  32. C.H. Winter, P.H. Sheridan, T.S. Lewkebandara, M.J. Heeg, and J.W. Proscia, J. Am. Chem. Soc. 114, 1095 (1992).

    Article  CAS  Google Scholar 

  33. C. Faltermeir, C. Goldberg, M. Jones, A. Upham, D. Manger, G. Peterson, J. Lau, A.E. Kaloyeros, B. Arkles, and A. Paranjpe, J. Electrochem. Soc. 144, 1002 (1997).

    Article  Google Scholar 

  34. M.K. Jain, T.S. Cale, and T.H. Gandy, J. Electrochem. Soc. 140, 242 (1993).

    Article  CAS  Google Scholar 

  35. S. Fujieda, M. Mizuta, and Y. Matsumoto, Adv. Mater Opt. Electron. 6, 127 (1996).

    Article  CAS  Google Scholar 

  36. S.D. Hersee and J.M. Ballingall, J. Vac. Sci. Technol. 8, 800 (1990).

    Article  CAS  Google Scholar 

  37. M. Grayson, Encyclopedia of Chemical Technology, 3rd ed. (John Wiley, New York, 1980), Vol. 12, p. 739.

    Google Scholar 

  38. L.R. Doolittle, Nucl. Instrum. Methods B9, 334 (1985).

    Google Scholar 

  39. L.R. Doolittle, Nucl. Instrum. Methods B15, 227 (1986).

    Article  CAS  Google Scholar 

  40. H.K. Shin, H.J. Shin, J.G. Lee, S.W. Kang, and B.T. Ahn, Chem. Mater. 9, 76 (1997).

    Article  CAS  Google Scholar 

  41. C.M. Truong, P.J. Chen, J.S. Corneille, W.S. Oh, and D.W. Goodman, J. Phys. Chem. 99, 8831 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amato-Wierda, C., Wierda, D.A. Chemical vapor deposition of titanium nitride thin films from tetrakis(dimethylamido)titanium and hydrazine as a coreactant. Journal of Materials Research 15, 2414–2424 (2000). https://doi.org/10.1557/JMR.2000.0347

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0347

Navigation