Skip to main content
Log in

Formation and characterization of germanium nanoparticles

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Elemental germanium was mechanically milled with magnesium oxide with the intention of forming disperse nanoparticulate germanium in a soluble matrix. The crystallite size was determined by x-ray diffraction (XRD) and Raman spectroscopy using a phonon confinement model. The crystallite size was found to decrease exponentially with milling time; however, the size determined by XRD was typically five to ten times greater than that by Raman. This was attributed to the presence of two separate crystallite sizes, which were averaged when using the Scherrer equation for the XRD data. Sonication of the powder resulted in the breakup of >20 μm aggregates into individual particles of approximately 40 nm. These particles are thought to compose a single crystal core with a crystallite size of approximately 28 nm surrounded by a layer of smaller crystallites (approximately 5 nm), which showed quantization during Raman spectroscopy. Separation of the germanium from the magnesium oxide was readily achieved using a simple acid leach, although some oxidation of germanium was evident when using an aqueous leach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.A. Chiu, A.A. Seraphin, and K.D. Kolenbrander, J. Electro. Mater. 23, 347 (1994).

    CAS  Google Scholar 

  2. T. Shimizuiwayama, S. Nakao, and K. Saitoh, Jpn. J. Appl. Phys., Part 2, 34, 86 (1994).

    Google Scholar 

  3. Y. Ishikawa, N. Shibata, and S. Fukatsu, Appl. Phys. Lett. 68, 2249 (1996).

    CAS  Google Scholar 

  4. P.R. Cabarrocas, P. Gay, and A. Hadjadj, J. Vac. Sci. Technol., A Vacuum 14, 655 (1996).

    Google Scholar 

  5. L.B. Zhang, J.L. Coffer, W. Xu, and T.W. Zerda, Chem. Mater. 9, 2249 (1997).

    CAS  Google Scholar 

  6. P. Millet and A. Calka, Mater. Sci. Eng. A Properties Micro 182, 1222 (1994).

    Google Scholar 

  7. T.D. Shen, C.C. Koch, T.L. McCormick, R.J. Nemanich, J.Y. Huang, and J.G. Huang, J. Mater. Res. 10, 139 (1995).

    CAS  Google Scholar 

  8. T.D. Shen, I. Shmagin, C.C. Koch, R.M. Kolbas, Y. Fahmy, L. Bergman, R.J. Nemanich, M.T. McClure, Z. Sitar, and M.X. Quan, Phys. Rev. B: Condens. Matter 55, 7615 (1997).

    CAS  Google Scholar 

  9. G.J. Fan, F.Q. Guo, Z.Q. Hu, M.X. Quan, and K. Lu, Phys. Rev. B: Condens. Matter 55, 11010 (1997).

    CAS  Google Scholar 

  10. T.D. Shen, K.Y. Wang, M.X. Quan, and Z.Q. Hu, Appl. Phys. Lett. 63, 1637 (1993).

    CAS  Google Scholar 

  11. R. Martin-Lopez, B. Lenoir, A. Dauscher, X. Devaux, W. Dummler, H. Scherrer, M. Zandona, and J.F. Remy, Scripta Mater. 37, 219 (1997).

    CAS  Google Scholar 

  12. P. Balaz, M. Balintova, Z. Bastl, J. Briancin, and V. Sepelak, Solid State Ionics 101, 45 (1997).

    Google Scholar 

  13. P. Millet, A. Calka, J.S. Williams, and G.J.H. Vantenaar, Appl. Phys. Lett. 63, 2505 (1993).

    CAS  Google Scholar 

  14. Z.L. Li, J.S. Williams, and A. Calka, J. Appl. Phys. 81, 8029 (1997).

    CAS  Google Scholar 

  15. N.J. Welham, Trans. Inst. Min. Metall. 106C, 141 (1997).

    Google Scholar 

  16. N.J. Welham and D.J. Llewellyn, Miner. Eng. 11, 827 (1998).

    CAS  Google Scholar 

  17. T. Tsuzuki and P.G. McCormick, Appl. Phys. 65, 607 (1997).

    CAS  Google Scholar 

  18. T. Tsuzuki, J. Ding, and P.G. McCormick, Physica B 239, 378 (1997).

    CAS  Google Scholar 

  19. J.S. Benjamin, Metall. Trans. 1, 2943 (1970).

    CAS  Google Scholar 

  20. N.J. Welham and D.J. Llewellyn, J. Eu. Ceram. Soc. 19, 2833 (1999).

    CAS  Google Scholar 

  21. A.W. Weeber and H. Bakker, Physica B 153, 93 (1988).

    CAS  Google Scholar 

  22. C.C. Koch, J. Non-Cryst. Solids 117/118, 670 (1990).

    Google Scholar 

  23. E. Gaffet and M. Harmelin, J. Less-Comm. Met. 157, 201 (1990).

    CAS  Google Scholar 

  24. N.J. Welham, Mater. Sci. Eng. A 255, 81 (1998).

    Google Scholar 

  25. D.R. Lide, Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1992).

    Google Scholar 

  26. A. Calka and A.P. Radlinski, Mater. Sci. Eng. A134, 1350 (1991).

    CAS  Google Scholar 

  27. B.E. Warren, X-Ray Diffraction (Dover, New York, 1990), pp. 251–314.

    Google Scholar 

  28. T.J.B. Holland and S.A.T. Redfern, Mineralogical Magazine 61, 65 (1997).

    CAS  Google Scholar 

  29. P. Schaaf, G. Rixecker, E. Yang, C. Wagner and U. Gonser, Hyperfine Interact. 94, 2239 (1994).

    CAS  Google Scholar 

  30. C.C. Koch, Nanostruct. Mater. 9, 13 (1997).

    CAS  Google Scholar 

  31. N.J. Welham, J. Mater. Res. 13, 1607 (1998).

    CAS  Google Scholar 

  32. N.J. Welham, J. Mater. Sci. 33, 1795 (1998).

    CAS  Google Scholar 

  33. R. Jenkins, Rev. Mineral. 20, 47 (1989).

    Google Scholar 

  34. C.S. Menoni, J.Z. Hu, and I.L. Spain, Phys. Rev. B 34, 362 (1986).

    CAS  Google Scholar 

  35. S. Hong and M.Y. Chou, Phys. Rev. B: Condens. Matter 57, 6262 (1998).

    CAS  Google Scholar 

  36. J. Fortner, R.Q. Yu, and J.S. Lannin, Phys. Rev. B 42, 7610 (1990).

    CAS  Google Scholar 

  37. M. Fujii, S. Hayashi, and K. Yamamoto, Appl. Phys. Lett. 57, 2692 (1990).

    CAS  Google Scholar 

  38. J.R. Heath, J.J. Shiang, and A.P. Alivisatos, J. Chem. Phys. 101, 1607 (1994).

    CAS  Google Scholar 

  39. A. Stella, P. Tognini, C.E. Bottani, P. Milani, P. Cheyssac, and R. Kofman, Thin Solid Films 318, 100 (1998).

    CAS  Google Scholar 

  40. C.E. Bottani, C. Mantini, P. Milani, M. Manfredini, A. Stella, P. Tognini, P. Cheyssac, and R. Kofman, Appl. Phys. Lett. 69, 2409 (1996).

    CAS  Google Scholar 

  41. R.L. Snyder and D.L. Bish, Rev. Mineral. 20, 101 (1989).

    Google Scholar 

  42. G. Nilsson and G. Nelin, Phys. Rev. B 3, 364 (1971).

    Google Scholar 

  43. I.H. Campbell and P.M. Fauchet, Solid State Comm. 58, 739 (1986).

    CAS  Google Scholar 

  44. N.J. Welham, Mater. Sci. Eng. A 248, 230 (1998).

    Google Scholar 

  45. N.J. Welham, J. Mater. Sci. 34, 21 (1999).

    CAS  Google Scholar 

  46. N.J. Welham, J. Mater. Res. 14, 619 (1999).

    CAS  Google Scholar 

  47. N.J. Welham, Mater. Sci. Technol. 15, 456 (1999).

    CAS  Google Scholar 

  48. B.A. Wills, Mineral Processing Technology (Pergamon Press, Oxford, United Kingdom, 1992), p. 855.

    Google Scholar 

  49. E.M. Gutman, Mechanochemistry of Materials (Cambridge International Science Publishing, Cambridge, United Kingdom, 1998), p. 212.

    Google Scholar 

  50. K. Tkacova, H. Heegn, and N. Stevulova, Int. J. Min. Proc. 40, 17 (1993).

    CAS  Google Scholar 

  51. D. Maurice and T.H. Courtney, Metall. Mater. Trans. A 27, 1973 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. J. Welham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welham, N.J. Formation and characterization of germanium nanoparticles. Journal of Materials Research 15, 2400–2407 (2000). https://doi.org/10.1557/JMR.2000.0345

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0345

Navigation