Skip to main content
Log in

Investigation of the mechanism of sol-gel formation in the Sr(NO3)2/citric acid/ethylene glycol system by solution state 87 Sr nuclear magnetic resonance spectroscopy

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The polymerization mechanism of a modified Pechini process was investigated by 87Sr nuclear magnetic resonance spectroscopy for the mixed solution of strontium nitrate, citric acid, and ethylene glycol. The C-ratio (the ratio of citric acid to metal ions in the polymer complex) is suggested to have a strong influence on the quality of the derived film. An analysis of the chemical shift variation, as a function of C-ratio, indicates the presence in the solution of two species: solvated strontium ions and strontium ions bound to the polymer complex, with a stoichiometry of 1:7. A polymeric precursor model based on this stoichiometry is proposed. Through a relaxation rate study of the strontium sites, it was found that the polymerization mechanism is predominantly bimolecular within the concentration region being studied. The equilibrium rate constant for the polymerization was calculated to be 104 s−1. A kinetic study of the fast cation exchange between the two identified strontium sites indicates that the inhomogeneity of the polymeric network leads to film cracking during pyrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Matsumoto, S. Yamada, T. Nishida, and E. Sato, J. Electrochem. Soc. 127, 2360 (1980).

    Article  CAS  Google Scholar 

  2. D.B. Meadowcroft, Nature 226, 847 (1970); Y. Teraoka, H.M. Zhang, S. Furukawa, and N. Yamazoc, Chem. Lett. 1743 (1985).

    Article  CAS  Google Scholar 

  3. H.J.M. Bouwmeester, H. Kruidhof, and A.J. Burggraaf, Solid State Ionics 72, 185 (1994).

    Article  CAS  Google Scholar 

  4. X.J. Huang, J. Schoonman, L.Q. Chen, Sens. Actuators B 22, 211, 219 (1995).

    Google Scholar 

  5. E.A. McNamara, S.A. Montzka, R.M. Barkley, and R.E. Sievers, J. Chromatogr. 452, 75 (1988).

    Article  CAS  Google Scholar 

  6. B.C.H. Steele, Solid State Ionics 75, 157 (1995).

    Article  CAS  Google Scholar 

  7. C.C. Chen, M.M. Nasrallah, and H.U. Anderson, J. Electrochem. Soc. 140, 3555 (1993).

    Article  CAS  Google Scholar 

  8. M.P. Pechini, U.S. Patent No. 3330697 (1967).

  9. S. Kumar and G.L. Messing, in Better Ceramics Through Chemistry V, edited by M.J. Hampden-Smith, W.G. Klemperer, and C.J. Brinker (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992), p. 95.

  10. W. Kucper, S.J. Visco, and L.C. DeJonghe, Solid State Ionics 52, 251 (1992).

    Article  Google Scholar 

  11. M. Liu and D.S. Wang, J. Mater. Res. 10, 1 (1995).

    Article  Google Scholar 

  12. A. Delville, H.D. Stover, and C.J. Detellier, J. Am. Chem. Soc. 107, 4172 (1985).

    Article  CAS  Google Scholar 

  13. M. Shporer and Z. Luz, J. Am. Chem. Soc. 97, 665 (1975).

    Article  CAS  Google Scholar 

  14. B.O. Strasser, M. Shamsipur, and A.I. Popov, J. Phys. Chem. 89, 4822 (1985).

    Article  CAS  Google Scholar 

  15. A. Delville, H.D. Stover, and C.J. Detellier, J. Am. Chem. Soc. 109, 7293 (1987).

    Article  CAS  Google Scholar 

  16. E. Schmidt and A.I. Popov, J. Am. Chem. Soc. 105, 1873 (1983).

    Article  CAS  Google Scholar 

  17. M.K. Ahn and E. Lemox, J. Phys. Chem. 93, 4924 (1989).

    Article  CAS  Google Scholar 

  18. D.M. Holton, A.S. Ellaboudy, and R.N. Edwards, Proc. R. Soc. London, Ser. A 415, 121 (1988).

    CAS  Google Scholar 

  19. W.S. Rees, Jr., Alkaline Earth Metals: Inorganic Chemistry, in Encyclopedia of Inorganic Chemistry, edited by R.B. King (John Wiley & Sons, New York, 1994), Vol. 1, pp. 67–87.

    Google Scholar 

  20. C.D. Jeffries and P.B. Sogo, Phys. Rev. 91, 1286 (1953).

    Article  CAS  Google Scholar 

  21. J. Sandstrom, Dynamic NMR Spectroscopy (Academic Press, New York, 1982), p. 14.

    Google Scholar 

  22. E.D. Becker, High Resolution NMR Theory and Chemical Applications, 2nd ed. (Academic Press, Orlando, FL, 1980), p. 242.

    Google Scholar 

  23. L.Z. Zdunek and V. Gold, J. Chem. Soc., Faraday Trans. 2 78, 1825 (1982).

    Google Scholar 

  24. A. Delville, H.D. Stover, and C.J. Detellier, J. Am. Chem. Soc. 107, 4167 (1985).

    Article  Google Scholar 

  25. J. Sandstrom, Dynamic NMR Spectroscopy (Academic Press, New York, 1982), p. 17.

    Google Scholar 

  26. D.E. Woessner, J. Chem. Phys. 35, 41 (1961).

    Article  CAS  Google Scholar 

  27. P. Courty, H. Ajot, C. Marcilly, and B. Delmon, Powder Technol. 7, 21 (1973).

    Article  CAS  Google Scholar 

  28. R. Akki, P. Desai, and A.S. Abhiraman, J. Appl. Polym. Sci. 54, 1263 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meilin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Agarwal, V., Liu, M. et al. Investigation of the mechanism of sol-gel formation in the Sr(NO3)2/citric acid/ethylene glycol system by solution state 87 Sr nuclear magnetic resonance spectroscopy. Journal of Materials Research 15, 2393–2399 (2000). https://doi.org/10.1557/JMR.2000.0344

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0344

Navigation