Skip to main content
Log in

Metalorganic chemical vapor deposition of nickel films from Ni(C5H5)2/H2

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nickel thin films were deposited with Ni(C5H5)2 \NiCp2, bis(cyclopentadienyl)nickel, nickelocene]/H2 at various temperatures and H2/Ar ratios. The deposition rate, resistivity, purity, crystal structure, and surface morphology of the nickel film were investigated. Also, thermal analysis was done to find out the dissociation characteristics of NiCp2, and Fourier transform infrared spectroscopy diagnostics were carried out to study the gas phase reaction kinetics of NiCp2. Nickel films deposited at higher temperatures (>225 °C) had high carbon content and high resistivity. At higher temperatures, thermal decomposition of NiCp2 and subsequent decomposition of Cp induced a large amount of carbon incorporation into the film. At lower temperatures (<190 °C), the slow dissociation of NiCp led to some extent of carbon incorporation in the film. Nickel films deposited at around 200 °C showed carbon content lower than 5% and lower resistivity because of the effective dissociation of Ni–Cp and desorption of Cp from the surface. Nickel films deposited with hydrogen addition showed higher purity, crystallinity, and lower resistivity due to the removal of the carbon on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Maruyama and T. Tago, J. Mater. Sci. 28, 5345 (1993).

    CAS  Google Scholar 

  2. D. Tonneau, G. Auvert, and Y. Pauleau, J. Appl. Phys. 64, 5189 (1988).

    CAS  Google Scholar 

  3. J. Remes, H. Moilanen, and S. Leppavuori, Phys. Scr. T69, 268 (1997).

    CAS  Google Scholar 

  4. T.R. Jervis, J. Appl. Phys. 58, 1400 (1985).

    CAS  Google Scholar 

  5. S.D. Allen, R.Y. Jan, S.M. Mazuk, and S.D. Vernon, J. Appl. Phys. 58, 327 (1985).

    CAS  Google Scholar 

  6. M. Becht, F. Atamny, A. Baiker, and K-H. Dahmen, Surf. Sci. 371, 399 (1997).

    CAS  Google Scholar 

  7. T.T. Kodas and M.J. Hampden-Smith, in The Chemistry of Metal CVD (VCH, Cambridge, United Kingdom, 1994), p. 340.

    Google Scholar 

  8. L. Brissonnneau, A. Reynes, and C. Vahlas, in Proceedings of the Fourteenth International Conference and EUROCVD-11 on Chemical Vapor Deposition (Electrochemical Society, Pennington, NJ, 1997), p. 1580.

    Google Scholar 

  9. Y.A. Kaplin, G.V. Belysheva, S.F. Zhil’tsov, G.A. Domrachev, and L.S. Chernyshova, Zh. Obshch. Khim. 50, 118 (1980).

    CAS  Google Scholar 

  10. D-H. Sun, B.E. Bent, and J.G. Chen, J. Vac. Sci. Technol. A 15, 1581 (1997).

    CAS  Google Scholar 

  11. N.R. Avery, Surf. Sci. 163, 357 (1985).

    CAS  Google Scholar 

  12. M.Y. Park, J.H. Son, S.W. Kang, and S. Rhee, J. Mater. Res. 14, 975 (1999).

    CAS  Google Scholar 

  13. J.Y. Yun, M.Y. Park, and S. Rhee, J. Electrochem. Soc. 145, 2453 (1998).

    CAS  Google Scholar 

  14. P. Schissel, D.J. McAdoo, E. Hedaya, and D.W. McNeil, J. Chem. Phys. 49, 5061 (1968).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Woo Rhee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, JK., Rhee, SW. Metalorganic chemical vapor deposition of nickel films from Ni(C5H5)2/H2. Journal of Materials Research 15, 1828–1833 (2000). https://doi.org/10.1557/JMR.2000.0264

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0264

Navigation