Skip to main content
Log in

Microstructure and Mechanical Properties of Sm1-xSrxCo0.2Fe0.8O3

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The room temperature mechanical properties of a mixed conducting perovskite Sm1?xSrxCo0.2Fe0.8O3 (x = 0.2 to 0.8) were examined. Density, crystal phase, and microstructure were characterized. It was found that the grain size increased abruptly with increasing Sr content. Mechanical properties of elastic modulus, microhardness, indentation fracture toughness, and biaxial flexure strength were measured. Young's modulus of 180–193 GPa and shear modulus of 70–75 GPa were determined. The biaxial flexure strength was found to decrease with increasing Sr content from ∼70 to ∼20 MPa. The drop in strength was due to the occurrence of extensive cracking. Indentation toughness showed a similar trend to the strength in that it decreased with increasing Sr content from ∼1.1 to ∼0.7 MPa m1/2. In addition, fractography was used to characterize the fracture behavior in these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Teraoka, H.M. Zhang, K. Okamoto, and N. Yamazoe, Mater. Res. Bull. 23, 51 (1988).

    Article  CAS  Google Scholar 

  2. J.W. Stevenson, T.R. Armstrong, R.D. Carneim, L.R. Pederson, and W.J. Weber, J. Electrochem. Soc. 143, 2722 (1996).

    Article  CAS  Google Scholar 

  3. C.C. Chen, M.M. Nasrallah, H.U. Anderson, and M.A. Alim, J. Electrochem. Soc. 142, 491 (1995).

    Article  CAS  Google Scholar 

  4. S. Sekido, H. Tachibana, Y. Yamamura, and T. Kambara, Solid State Ionics 37, 253 (1990).

    Article  CAS  Google Scholar 

  5. H. Kruidof, H.J.M. Bouwmeester, R.H.E. v. Doorn, and A.J. Burggaaf, Solid State Ionics, 63–65, 816 (1993).

    Article  Google Scholar 

  6. Y. Teraoka, T. Nobunaga, K. Okamoto, and N. Yamazoe, Solid State Ionics, 48, 207 (1991).

    Article  CAS  Google Scholar 

  7. S. Carter, A. Selcuk, R.J. Chater, J. Kajda, J.A. Kilner, and B.C.H. Steele, Solid State Ionics 53–56, 597 (1992).

    Article  Google Scholar 

  8. T. Ishigaki, S. Yamauchi, K. Kishio, J. Mizusaki, and K. Fueki, J. Solid State Chem. 73, 179 (1988).

    Article  CAS  Google Scholar 

  9. J. Mizusaki, M. Yoshihiro, S. Yamauchi, and K. Fueki, J. Solid State Chem 58, 257 (1985).

    Article  CAS  Google Scholar 

  10. L-W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, and S.R. Sehlin, Solid State Ionics, 76, 272 (1995).

    Google Scholar 

  11. C-Y. Tsai, A.G. Dixon, Y.H. Ma, W.R. Moser, and M.R. Pascucci, J. Am. Ceram. Soc. 81, 1437 (1998).

    Article  CAS  Google Scholar 

  12. U. Balachandran, J.T. Dusek, S.M. Sweeney, R.B. Poeppel, R.L. Mieville, P.S. Maiya, M.S. Kleefisch, S. Pei, T.P. Kobylinski, and C.A. Udovich, A.C. Bose, Am. Ceram. Soc. Bull. 74, 71 (1995).

    CAS  Google Scholar 

  13. B.C. Steele, Mater. Sci. Eng. B 13, 79 (1992).

    Article  Google Scholar 

  14. N.Q. Minh, J. Am. Ceram. Soc. 76, 563 (1993).

    Article  CAS  Google Scholar 

  15. B.C.H. Steele, I. Kelly, H. Middleton, and R. Rudkin, Solid State Ionics 28–30, 1547 (1988).

    Article  Google Scholar 

  16. K. Otsuka, K. Jinno, and A. Morokawa, J. Catal. 100, 353 (1986).

    Article  CAS  Google Scholar 

  17. K.D. Campbell, H. Zhang, and J.H. Lunsford, J. Phys. Chem. 92, 282 (1963).

    Google Scholar 

  18. Y. Jiang, I.V. Yentekakis, and C.G. Vayenas, Science 264, 1563 (1994).

    Article  CAS  Google Scholar 

  19. J.L. Bates, L.A. Chick, and W.J. Weber, Solid State Ionics 52, 235 (1992).

    Article  CAS  Google Scholar 

  20. M.C. Bhardwaj, in Advanced Metal and Ceramic Composites, Proceedings of the International Conference on Advanced Metal & Ceramic Matrix Composites: P/M Processing, Process Modeling & Mechanical Behavior, edited by R.B. Bhagat (Minerals, Metals & Materials Society, Warrendale, PA, 1990), pp. 1–15.

    Google Scholar 

  21. A.F. Kirstein and R.M. Wooley, J. Res. Natl. Bur. Stand. 71C(1), 1 (1967).

    Google Scholar 

  22. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981).

    Article  CAS  Google Scholar 

  23. M.W. Murphy, T.R. Armstrong, and P.A. Smith, J. Am. Ceram. Soc. 80, 165 (1997).

    Article  CAS  Google Scholar 

  24. Y-S. Chou, J.W. Stevenson, T.R. Armstrong, and L.R. Pederson (unpublished).

  25. S.W. Paulik, S. Baskaran, and T.R. Armstrong, J. Mater. Sci. 33, 2397 (1998).

    Article  CAS  Google Scholar 

  26. N.M. Sammes, F.M. Keppeler, H. Nafe, and F. Aldinger, J. Am. Ceram. Soc. 81, 3104 (1998).

    Article  CAS  Google Scholar 

  27. S.S. Baskaran, C.A. Lewinsohn, Y-S. Chou, M. Qing, J.W. Stevenson, and T.R. Armstrong, J. Mater. Sci. 34, 1 (1999).

    Article  Google Scholar 

  28. M.L. Cohen, Phys. Rev. B, 32, 7988 (1985).

    Article  CAS  Google Scholar 

  29. R.D. Shannon, Acta Cryst. A 32, 751 (1976).

    Article  Google Scholar 

  30. K. Hasinska, E.D. Wachsman, J.W. Stevenson, and T.R. Armstrong (unpublished).

  31. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics (John Wiley & Sons, New York, 1975), p. 820.

    Google Scholar 

  32. D.P.H. Hasselman, L.F. Johnson, L.D. Bentsen, R. Syed, H.L. Lee, and M.V. Swain, Am. Ceram. Soc. Bull. 66, 799 (1987).

    CAS  Google Scholar 

  33. T. Ishigaki, S. Yamauchi, K. Kishio, J. Mizusaki, and K. Fueki, J. Solid State Chem. 73, 179 (1988).

    Article  CAS  Google Scholar 

  34. T.R. Armstrong, J.W. Stevenson, L.R. Pederson, and P.E. Raney, J. Electrochem. Soc. 143, 2919 (1996).

    Article  CAS  Google Scholar 

  35. C.S. Montross, H. Yokokawa, M. Dokiya, and L. Bekessy, J. Am. Ceram. Soc. 78, 1869 (1995).

    Article  CAS  Google Scholar 

  36. N.M. Sammes, R. Ratnaraj, and M.G. Fee, J. Mater. Sci. 29, 4319 (1994).

    Article  CAS  Google Scholar 

  37. F.F. Lange, J. Am. Ceram. Soc. 62, 428 (1979).

    Article  CAS  Google Scholar 

  38. A.G. Evans, A.H. Heuer, and D.L. Porter, in Fracture 77, Advances in Research on the Strength and Fracture of Materials, Fourth International Conference on Fracture Vol. 1, edited by D.M.R. Taplin (Pergamon, New York, 1978), pp. 529–556.

    Chapter  Google Scholar 

  39. P.L. Swaanson, C.J. Fairbanks, B.R. Lawn, Y-W. Mai, and B.J. Hocky, J. Am. Ceram. Soc. 70, 279 (1987).

    Article  Google Scholar 

  40. G.K. Bansal, J. Am. Ceram. Soc. 59, 87 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, YS., Stevenson, J.W., Armstrong, T.R. et al. Microstructure and Mechanical Properties of Sm1-xSrxCo0.2Fe0.8O3. Journal of Materials Research 15, 1505–1513 (2000). https://doi.org/10.1557/JMR.2000.0216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0216

Navigation