Skip to main content
Log in

Microporous Semicrystalline Silica Materials

  • Rapid Communications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new family of microporous semicrystalline silica materials (MSSMs) were developed at room temperature from acidic mixtures of alkyl-substituted silane and tetramethylalkoxysilane. Hydrolyzed alkyl-substituted silica precursors, having hydrophilic silanol groups and hydrophobic alkyl groups, presumably act not only as templates but also as sol stabilizers for continuous pore engineering of silica materials in the micropore region. Depending on the substituted alkyl (SUA) groups in initial sols, MSSMs have distinct broad x-ray diffraction peaks in low 2θ range of 2° to 12°, distinguishable thermal behavior of SUA groups, highly flexible processability, and discrete micropore size with good thermal stability of micropores after the removal of SUA groups. These designer microporous silicas are expected to be useful for molecular sieving applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Brinker, R. Sehgal, S.L. Heitala, R. Deshpande, D.M. Smith, D. Loy, and C.S. Ashley, J. Memb. Sci. 94, 85 (1994).

    Article  CAS  Google Scholar 

  2. K.J. Shea, D.A. Loy, and O. Webster, J. Am. Chem. Soc. 114, 6700 (1992).

    Article  CAS  Google Scholar 

  3. G. Cao, Y. Lu, L. Delattre, C.J. Brinker, and G.P. Lopez, Adv. Mater. 8, 588 (1996).

    Article  CAS  Google Scholar 

  4. P.B. Malla, S. Komarneni, H. Taguchi and H. Kido, J. Am. Ceram. Soc. 74, 2988 (1991).

    Article  CAS  Google Scholar 

  5. C.T. Kresge, M.E. Leonowicz, W.T. Roth, J.C. Vartuli, and J.S. Beck, Nature 359, 710 (1992).

    Article  CAS  Google Scholar 

  6. M. Ogawa, J. Am. Chem. Soc. 116, 7941 (1994).

    Article  CAS  Google Scholar 

  7. M. Ogawa, Chem. Commun. 1149 (1996).

  8. Y. Lu, R. Gangulli, C.A. Drewein, M.T. Anderson, C.J. Brinker, W.Gong, Y. Guo, H. Soyez, B. Dunn, M.H. Huang, and J.I. Zink, Nature 389, 364 (1997).

    Article  CAS  Google Scholar 

  9. R.S.A de Lange, J.H.A. Hekkink, K. Keizer, and A.J. Burggraaf, Microporous Mater. 4, 169 (1995).

    Article  CAS  Google Scholar 

  10. T. Bein, Chem. Mater. 8, 1636 (1996).

    Article  CAS  Google Scholar 

  11. M. C. Lovallo and M. Tsapatsis, Chem. Mater. 8, 1579 (1996).

    Article  CAS  Google Scholar 

  12. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, New York, 1990), p. 908.

    Google Scholar 

  13. L. Chu, M.I. Tejedor-Tejedor, and M.A. Anderson, Microporous Mater. 8, 207 (1997).

    Article  CAS  Google Scholar 

  14. E. Kreamer, S. Foerster, C. Goeltner, and M. Antonietti, Langmuir 14, 2027 (1998).

    Article  Google Scholar 

  15. A. Shimojima, Y. Sugahara, and K. Kuroda, J. Am. Chem. Soc. 120, 4528 (1998).

    Article  CAS  Google Scholar 

  16. B.M. De Witte, D.Commers, and J.B. Uytterhoeven, J. Non-Cryst. Solids 202, 35 (1996).

    Article  Google Scholar 

  17. M. Park, S. Komarneni, and J. Choi, J. Mater. Sci. 25, 75 (1998).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, M., Komarneni, S., Lim, W.T. et al. Microporous Semicrystalline Silica Materials. Journal of Materials Research 15, 1437–1440 (2000). https://doi.org/10.1557/JMR.2000.0208

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0208

Navigation