Skip to main content
Log in

Influence of Mechanical Pressure and Temperature on the Chemical Interaction Between Steel and Silicon Nitride Ceramics

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The chemical interaction between a Si3N4 ceramic, with Al2O3 and MgO sintering additives, and DIN 100Cr6 steel was studied by means of static interaction couple experiments between 500 and 1200 °C. At 500 °C, the ceramic was chemically stable in contact with the steel. In the temperature range between 700 and 1100 °C, the silicon nitride dissociated in contact with the steel. The Si dissolved and diffused into the steel, whereas a nitrogen pressure built up in the micropores at the interface, limiting and inhibiting the reaction rate. The strength of the obtained interfacial bond was too low to withstand the residual stresses formed during cooling, and therefore, the interaction couples fell apart during cooling. Above 1100 °C, the nitrogen also dissolved and diffused into the steel, enhancing the overall rate of interaction. A strong interface was formed, resulting in a well-defined interaction layer on the ceramic side of the interaction couple. The mechanical pressures on the interaction couples were adjusted to study the influence of plastic deformation of the steel on the chemical interaction. Higher contact pressures resulted in more homogeneous and uniform interaction layers. The reactivity of plastically and elastically deforming steel, however, was found to be the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Chudecki, Ceram. Bull. 69, 1113 (1990).

    Google Scholar 

  2. G.J. Heinrich and H. Kruner, in Tailoring of Mechanical Properties of Silicon Nitride, edited by M.J. Hoffmann and G. Petzow (Kluwer, Dordrecht, 1994), p. 19.

    Chapter  Google Scholar 

  3. H. Kawamura, in Proceedings of the 6th International Symposium on Ceramic Materials and Components for Engines, edited by K. Niihara, S. Kanazaki, K. Komeya, S. Hirano, and K. Morinaga (Technoplaza, Japan, 1998), p. 5.

    Google Scholar 

  4. S. Jahanmir, Friction and Wear of Ceramics (Marcel Dekker, New York, 1994), p. 3.

    Google Scholar 

  5. T.E. Fischer and H. Tomizawa, Wear 10, 29 (1985).

    Article  Google Scholar 

  6. C. Melandri, M.G. Gee, G. de Portu, and S. Guicciardi, Tribol. Int. 28, 403 (1995).

    Article  CAS  Google Scholar 

  7. S.P. Dong, S. Danyluk, and J.M. McNallan, J. Am. Ceram. Soc. 75, 3033 (1992).

    Article  Google Scholar 

  8. X. Dong and S. Jahanmir, Wear 165, 169 (1993).

    Article  CAS  Google Scholar 

  9. J. Vižintin, M. Kalin, S. Novak, G. Dražič, L.K. Ives, and M.B. Peterson, Wear 192, 11 (1996).

    Article  Google Scholar 

  10. M. Kalin, J. Vižintin, and S. Novak, Mater. Sci. Eng. A 220, 191 (1996).

    Article  Google Scholar 

  11. M. Kalin, Fretting Wear Mechanisms in Contact of Steel and Silicon Nitride Ceramics (Centre for tribology and technical diagnostics, University of Ljubljana, Ljubljana, Slovenia, 1999), pp. 86, 120, 130.

    Google Scholar 

  12. S. Novak, G. Dražič, M. Kalin, and J. Vižintin, Wear 225–229, 1276 (1999).

    Article  Google Scholar 

  13. E. Heikinheimo, I. Isomaki, A.A. Kodentsov, and F.J.J. van Loo, J. Eur. Ceram. Soc. 17, 25 (1997).

    Article  CAS  Google Scholar 

  14. F.J. Oliveira, R.F. Silva, and J.M. Vieira, in Key Engineering Materials (Trans Tech Publications, Aedermannsdorf, Switzerland, 1997), Vol. 132–136, p. 2068.

    Google Scholar 

  15. J. Vleugels, T. Laoui, K. Vercammen, J.P. Celis, and O. Van der Biest, Mater. Sci. Eng. A 187, 177 (1994).

    Article  Google Scholar 

  16. J. Vleugels, L. Vandeperre, and O. Van Der Biest, J. Mater. Res. 11, 1265 (1996).

    Article  Google Scholar 

  17. R.F. Silva, F.J. Oliveira, F.P. Castro, and J.M. Vieira, Acta Mater. 46, 2501 (1998).

    Article  CAS  Google Scholar 

  18. B.T.J. Stoop and G. Den Ouden, Met. Trans. A 24, 1835 (1993).

    Article  Google Scholar 

  19. J. Vleugels and O. Van Der Biest, Advanced Ceramic Tools for Machining Application III, Key Engineering Materials Vols. 138–140, edited by I.M. Low (Trans Tech Publications, Aedermannsdorf, Switzerland, 1998), p. 127.

    Google Scholar 

  20. A. Suganuma, Y. Miyamoto, and M. Koizumi, Annu. Rev. Mater. Sci. 18, 47 (1988).

    Article  Google Scholar 

  21. J.C. Schuster and F. Weitzer, J. Solid State Chem. 70, 178 (1987).

    Article  Google Scholar 

  22. L. Kaufman, Calphad 3, 275 (1979).

    Article  CAS  Google Scholar 

  23. H.K.C Kumar, Ph.D. Thesis, Indian Institute of Technology (1991).

  24. F.J. Oliveira, R.F. Silva, and J.M. Vieira, in Proceedings of the CIMTEC ‘98, edited by P. Vincenzini (Techna Srl, Faenza, 1999), p. 947.

    Google Scholar 

  25. H.A. Wriedt and O.D. Gonzalez, Trans. Metall. Soc. AIME 221, 532 (1961).

    CAS  Google Scholar 

  26. A.M. Cottenden and E.A. Almond, Met. Technol. June, 221 (1981).

  27. B.M. Kramer and N.P. Suh, Trans. ASME 102, 303 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalin, M., Vižintin, J., Vleugels, J. et al. Influence of Mechanical Pressure and Temperature on the Chemical Interaction Between Steel and Silicon Nitride Ceramics. Journal of Materials Research 15, 1367–1376 (2000). https://doi.org/10.1557/JMR.2000.0199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0199

Navigation