Skip to main content
Log in

Phase Evolution During Sintering of Mullite/zirconia Composites Using Silica-coated Alumina Powders

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Mullite-based composites can be made by an in situ reaction process using silica-coated alumina (SCA) powder as a mullite precursor. In this paper we present the combined effects of zirconia and premullite seeds on the crystallization process and microstructure development. When zirconia is added without seeding, mullite formation proceeds through the formation of transient zircon. This phase provides a lower energy barrier for mullite nucleation and thus lowers the mullitization temperature. The presence of yttria as a stabilizer in zirconia reduces the activation energy for zircon formation and thus promotes the transient reaction. The addition of premullite seeds results in the nucleation of mullite from alumina and silica, and zircon does not form. At low seeding levels mullitization remains nucleation-controlled; however, once the seeding level exceeds 1–2%, this is no longer the case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.A. Aksay, D.M. Dabbs, and M. Sarikaya, Am. Ceram. Soc. 74, 2343 (1991).

    Article  CAS  Google Scholar 

  2. W.E. Lee and W.M. Rainforth, Ceramic Microstructures. Property Control by Processing (Chapman & Hall, London, United Kingdom, 1994).

    Google Scholar 

  3. Mullite and Mullite Based Composites, Ceramic Transaction Vol. 6, edited by S. Somiya, R.F. Davis, and J.A. Pask (American Ceramic Society, Westerville, OH, 1990).

  4. Mullite Processing Structure and Properties (topical issue), J. Am. Ceram. Soc. 74, 2341 (1991).

    Article  Google Scholar 

  5. Mullite ‘94 (special issue), J. Eur. Ceram. Soc. 16, 99 (1996).

    Article  Google Scholar 

  6. M.D. Sacks and H-W. Lee, in Mullite and Mullite Based Composites, Ceramic Transaction Vol. 6, edited by S. Somiya, R.F. Davis, and J.A. Pask (American Ceramic Society, Westerville, OH, 1990), pp. 167–207.

    Google Scholar 

  7. M.D. Sacks, G.W. Scheifele, N. Bozkurt, and R. Raghunathan, in Ceramic Powder Science IV, Ceramic Transaction Vol. 22, edited by G.L. Messing, S.I. Hirano, and H.H. Hausner (American Ceramic Society, Westerville, OH, 1991), pp. 437–455.

    Google Scholar 

  8. M.D. Sacks, N. Bozkurt, and G.W. Scheifele, J. Am. Ceram. Soc. 74, 2428 (1991).

    Article  CAS  Google Scholar 

  9. M.D. Sacks, K. Wang, G.W. Scheifele, and N. Bozkurt, J. Am. Ceram. Soc. 79, 571 (1996).

    Article  CAS  Google Scholar 

  10. M.D. Sacks, Y-J. Lin, G.W. Scheifele, K. Wang, and N. Bozkurt, J. Am. Ceram. Soc. 78, 2897 (1995).

    Article  CAS  Google Scholar 

  11. J.C. Huling and G.L. Messing, J. Am. Ceram. Soc. 74, 10, 2374 (1991).

    Article  Google Scholar 

  12. J.C. Huling and G.L. Messing, in Better Ceramics Through Chemistry IV, edited by B.J.J. Zelinski, C.J. Brinker, D.E. Clark, and D.R. Ulrich (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), pp. 515–526.

  13. J.S. Moya and M.I. Osendi, J. Mater. Sci. 2909 (1984).

  14. J.S. Moya and M.I. Osendi, J. Mater. Sci. Lett. 2, 559 (1983).

    Article  Google Scholar 

  15. V. Yaroshenko, D.S. Wilkinson, J. Am. Ceram. Soc. (2000, in press).

  16. K. Wang, M.D. Sacks, J. Am. Ceram. Soc. 79, 12 (1996).

    Article  CAS  Google Scholar 

  17. J.J. Shyu and Y.C. Chen, J. Mater. Res. 10, 63 (1995).

    Article  CAS  Google Scholar 

  18. S-H. Hong, W. Cermignani, and G.L. Messing, J. Eur. Ceram. Soc. 16, 133 (1996).

    Article  CAS  Google Scholar 

  19. P. Tartaj, C.J. Serna, J.S. Moya, J. Requena, M. Osana, S. De Asa, and F. Guitian, J. Mater. Sci. 31, 6089 (1996).

    Article  CAS  Google Scholar 

  20. H.E. Kissinger, J. Res. Natl. Bur. Stand. (U.S.) 50, 217 (1956).

    Article  Google Scholar 

  21. P. Boch, T. Chartier, and J.P. Giry, in Mullite and Mullite Based Composites, Ceramic Transaction Vol. 6, edited by S. Somiya, R.F. Davis, and J.A. Pask (American Ceramic Society, Westerville, OH, 1990), pp. 473–494.

    Google Scholar 

  22. N. Claussen and J. Jahn, J. Am. Ceram. Soc. 63, 228 (1980).

    Article  CAS  Google Scholar 

  23. W.E. Cameron, Am. Ceram. Soc. Bull. 56, 1003 (1977).

    CAS  Google Scholar 

  24. M. Yoshimura, Y. Hanaue, and S. Somiya, in Mullite and Mullite Based Composites, Ceramic Transaction Vol. 6, edited by S. Somiya, R.F. Davis, and J.A. Pask (American Ceramic Society, Westerville, OH, 1990), pp. 449–456.

    Google Scholar 

  25. S. Lathabai, D.G. Hay, F. Wagner, and N. Claussen, J. Am. Ceram. Soc. 79, 248 (1996).

    Article  CAS  Google Scholar 

  26. J.S. Wallace, G. Petzow, and N. Claussen, in Science and Technology of Zirconia, Advances in Ceramics Vol. 12, edited by N. Claussen, M. Ruhle, and A.H. Heuer (American Ceramic Society, Westerville, OH, 1984), pp. 436–442.

    Google Scholar 

  27. T. Koyama, S. Hayashi, A. Yasumori, K. Okada, M. Schmucker, and H. Schneider, J. Eur. Ceram. Soc. 16, 231 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaroshenko, V., Wilkinson, D.S. Phase Evolution During Sintering of Mullite/zirconia Composites Using Silica-coated Alumina Powders. Journal of Materials Research 15, 1358–1366 (2000). https://doi.org/10.1557/JMR.2000.0198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0198

Navigation