Skip to main content
Log in

Dielectric Properties of Pb(Fe2/3W1/3)1−xMnxO3 Ceramics in the Temperature Range 200–600 K

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The dielectric properties of Mn-doped Pb(Fe2/3W1/3)1−xMnxO3 (x = 0, 0.001, 0.003, and 0.005) in the temperature range 200–600 K were investigated. Two sets of dielectric peaks, located at 200–350 K and 350–600 K, were observed. The intensity of the dielectric permittivity and loss factor peaks for both relaxations decreased with the increase in the Mn content and no peak occurred when x = 0.005. Nonlinear current–voltage (IV) behavior was observed in the samples containing less than 0.005Mn. The activation energy values for the relaxations at 200–350 K and at 350–600 K were around 0.42 and 0.56 eV, respectively. The direct current conduction activation energies were around 0.41 eV. Nitrogen annealing eliminated the relaxation peaks at 200–350 K while oxygen annealing enhanced them. Both annealings eliminated the dielectric peaks at 350–600 K. The nonlinear IV characteristic tended to vanish either after the oxygen or the nitrogen annealing treatments. Relaxation mechanisms are proposed and discussed. It is suggested that the relaxation at 200–350 K is related to electron hole while the relaxation at 350–600 K is attributed to microstructure-dependent space-charge polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, and S.N. Popov, Sov. Phys. Solid State 2, 2584 (1961).

    Google Scholar 

  2. D. Viehland, S.J. Jang, and L.E. Cross, J. Appl. Phys. 68, 2916 (1990).

    Article  CAS  Google Scholar 

  3. D. Viehland, J.F. Li, S.J. Jang, and L.E. Cross, Phys. Rev. B 43, 8316 (1991).

    Article  CAS  Google Scholar 

  4. M.A. Akbas and P.K. Davies, J. Am. Ceram. Soc. 80, 2933 (1997).

    Article  CAS  Google Scholar 

  5. N. Setter and L.E. Cross, J. Appl. Phys. 51, 4356 (1980).

    Article  CAS  Google Scholar 

  6. K. Uchino and S. Nomura, J. Phys. Soc. Jpn. 41, 542 (1976).

    Article  CAS  Google Scholar 

  7. K. Uchino and S. Nomura, Jpn. J. Appl. Phys., Part 1 18, 1493 (1979).

    Article  CAS  Google Scholar 

  8. H.J. Hagemann, J. Phys. C 11, 3333 (1978).

    Article  CAS  Google Scholar 

  9. H. Ueoka, Ferroelectrics 7, 351 (1974).

    Article  CAS  Google Scholar 

  10. L. Zhou, P.M. Vilarinho, and J.L. Baptista, J. Mat. Sci. 33, 2673 (1998).

    Article  CAS  Google Scholar 

  11. L. Zhou, P.M. Vilarinho, and J.L. Baptista, Mater. Res. Bull. 31, 699 (1996).

    Article  CAS  Google Scholar 

  12. L. Zhou, P.M. Vilarinho, and J.L. Baptista, J. Appl. Phys. 85, 2312 (1999).

    Article  CAS  Google Scholar 

  13. L. Zhou, P.M. Vilarinho, and J.L. Baptista, Mater. Res. Bull. 29, 1193 (1994).

    Article  CAS  Google Scholar 

  14. L. Zhou, P.M. Vilarinho, P.Q. Mantas, J.L. Baptista, and E. Fortunato, J. Europ. Ceram. Soc. (2000, in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Vilarinho, P.M., Mantas, P.Q. et al. Dielectric Properties of Pb(Fe2/3W1/3)1−xMnxO3 Ceramics in the Temperature Range 200–600 K. Journal of Materials Research 15, 1342–1348 (2000). https://doi.org/10.1557/JMR.2000.0195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0195

Navigation