Skip to main content
Log in

Dielectric Properties of Nanocomposites of Silver in a Glass-ceramic Containing the Lithium Niobate Phase

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Glass-ceramics containing the LiNbO3 phase were used to grow nanometer-sized silver metal particles with median diameters in the range 10.5–17.3 nm. These nanocomposites showed large values of dielectric constant of the order of 103–104. Bergman's space charge model of a two-component composite gave results that differed from the experimental data. The polarization mechanism was concluded to be electronic in origin. An interrupted metallic strand model developed earlier by Rice and Bernasconi was used to explain the results obtained in the present specimen system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clusters and Cluster-Assembled Materials, edited by R.S. Averback, J. Bernholc, and D.L. Nelson (Mater. Res. Soc. Symp. Proc. 206, Pittsburgh, PA, 1991).

  2. J.R. Heath, Science 270, 1315 (1995).

    Article  CAS  Google Scholar 

  3. J.H. Hendler and F.C. Meldrum, Adv. Mater. 7, 607 (1995).

    Article  Google Scholar 

  4. A.P. Alivisatos, Science 271, 933 (1996).

    Article  CAS  Google Scholar 

  5. D. Bethell and D.J. Schiffrin, Nature 382, 581 (1996).

    Article  CAS  Google Scholar 

  6. Y. Wang and N. Herron, J. Phys. Chem. 95, 525 (1991).

    Article  CAS  Google Scholar 

  7. A.P. Alivisatos, J. Phys. Chem. 100, 13226 (1996).

    Article  CAS  Google Scholar 

  8. R.L. Whetten, D.M. Cox, D.J. Trevor, and A. Kaldor, Phys. Rev. Lett. 54, 1494 (1985).

    Article  CAS  Google Scholar 

  9. A.J. Cox, J.G. Louderback, S.E. Apsel, and L.A. Bloomfield, Phys. Rev. B 49, 122965 (1994).

    Article  Google Scholar 

  10. J.Q. Xiao, J.S. Jiang, and C.L. Chien, Phys. Rev. Lett. 68, 3749 (1992).

    Article  CAS  Google Scholar 

  11. J. Wecker, K. Schnitzke, H. Oerva, and W. Grogger, Appl. Phys. Lett. 67, 563 (1995).

    Article  CAS  Google Scholar 

  12. R. Kubo, J. Phys. Soc. Jpn. 17, 975 (1962).

    Article  CAS  Google Scholar 

  13. L.P. Gorkov and G.M. Eliashberg, Zh. Eksp. Teor. Fiz. 48, 1407 (1965) [Sov. Phys. JETP 21, 940 (1965)].

    Google Scholar 

  14. R. Dupree and M.A. Smithard, J. Phys. Soc., Proc. Phys. Soc. London 5, 408 (1972).

    CAS  Google Scholar 

  15. F. Meier and P. Wyder, Phys. Lett. 39A, 51 (1972).

    Article  Google Scholar 

  16. M.J. Rice and J. Bernasconi, Phys. Rev. Lett. 29, 113 (1972).

    Article  CAS  Google Scholar 

  17. B. Roy and D. Chakravorty, J. Phys: Condens. Matter 2, 9323 (1990).

    CAS  Google Scholar 

  18. B. Roy and D. Chakravorty, J. Appl. Phys. 74, 4190 (1993).

    Article  CAS  Google Scholar 

  19. K. Nassau and H.J. Levinstein, Phys. Rev. Lett. 7, 69 (1965).

    CAS  Google Scholar 

  20. E.H. Turner, Appl. Phys. Lett. 8, 303 (1966).

    Article  CAS  Google Scholar 

  21. A.M. Glass, M.E. Lines, K. Nassau, and J.W. Shiever, Appl. Phys. Lett. 31, 249 (1977).

    Article  CAS  Google Scholar 

  22. M. Takshige, T. Mitsui, T. Nakamma, Y. Aikawa, and M. Jang, Jpn. J. Appl. Phys., Part 2 20, L159 (1981).

    Article  Google Scholar 

  23. P.A. Tick and F.P. Fehlner, J. Appl. Phys. 43, 362 (1972).

    Article  CAS  Google Scholar 

  24. D.J. Bergman, Phys. Rev. C43, 377 (1978).

    Google Scholar 

  25. D.J. Bergman, Ann. Phys. (N.Y.) 138, 78 (1982).

    Article  CAS  Google Scholar 

  26. D. Stroud, G.W. Milton, and B.R. De, Phys. Rev. B 34, 5145 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dan, A., Chakravorty, D. Dielectric Properties of Nanocomposites of Silver in a Glass-ceramic Containing the Lithium Niobate Phase. Journal of Materials Research 15, 1324–1330 (2000). https://doi.org/10.1557/JMR.2000.0192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0192

Navigation