Skip to main content
Log in

Application of small-angle neutron scattering to the study of porosity in energetic materials

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Small-angle neutron scattering (SANS) and the method of contrast variation were used to measure porosity and crystallite surface area in the energetic system octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and to gauge the effects of mechanical deformation on the pore-size distribution and crystallite surface area. The crystallite surface area and the presence of voids (pores) in a high explosive system are known to affect its behavior and overall performance. Measures of these two quantities after an insult, resulting from various process and accident scenarios, can be used to predict the performance of an explosive system after process- and accident-related mechanical deformation. The contrast variation technique allows us to discriminate between internal pores and features that are on or contiguous with the crystallite surface. Measurements were conducted on loose powders of HMX (261 and 10 mm, volume averaged mean particle diameters) and pellets made by uniaxial consolidation to 7 and 10 vol% porosity, respectively. Analysis of the SANS data indicates significant alteration of the intragranular pore structure and systematic shifts in the surface area that are dependent upon mechanical deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Tarver, S. Chidester, and A. Nichols, J. Phys. Chem. 100, 5794 (1996).

    Article  CAS  Google Scholar 

  2. C.T. White, J.J.C. Barrett, J.W. Mintmire, M.L. Elert, and D.H. Robertson, in Decomposition, Combustion and detonation Chemistry of Energeic Materials, edited by T.B. Brill, T.P. Russell, W.C. Tao, and R.B. Wardle (Mater. Res. Soc. Symp. Proc. 418, Pittsburg, PA, 1996), p. 277.

  3. L. Borne, Proceedings of the 11th International Detonation Symposium, edited by J.M. Short and D.G. Tasker (Office of Naval Research), p. 286.

  4. L. Borne, Proceedings of the 10th International Detonation Symposium (1993), p. 181.

  5. D. Schaefer, R. Brow, B. Olivier, T. Rieker, G. Beaucage, L. Hrubesh, and J. Lin, Modern Aspects of Small Angle Neutron Scattering (Kluwer Academic Publishers, Boston, MA, 1995).

    Google Scholar 

  6. P. Fratzl, G. Vogl, and S. Klaumunzer, J. Appl. Crystallogr. 24, 588 (1991).

    Article  CAS  Google Scholar 

  7. M. Antxustegi, P. Hall, and J. Calo, Energy Fuels 12, 542 (1998).

    Article  CAS  Google Scholar 

  8. M. Antxustegi, P. Hall, and J. Calo, J. Colloids Interface Sci. 202, 490 (1998).

    Article  CAS  Google Scholar 

  9. R. Hjelm, W. Wampler, P. Seeger, and M. Gerspacher, J. Mater. Res. 9, 3210 (1994).

    Article  CAS  Google Scholar 

  10. D. Marr, M. Wartenberg, K. Schwartz, M. Agamalian, and G. Wignall, Macromolecules 30, 2120 (1997).

    Article  CAS  Google Scholar 

  11. D. Acharya, T. Crowley, R. Hughes, C. Koon, M. Menendez, and F. Rieutord, J. Appl. Crystallogr. 23, 424 (1990).

    Article  CAS  Google Scholar 

  12. D. Schwahn, H. Ullmaier, J. Schelten, and W. Kesternich, Acta Metall. 31, 2003 (1983).

    Article  CAS  Google Scholar 

  13. Q. Li, W. Kesternich, D. Schwahn, and H. Ullmaier, Acta Metall. Mater. 38, 2382 (1990).

    Google Scholar 

  14. F. Carsughi, W. Kesternich, D. Schwahn, H. Ullmaier, and H. Schroeder, J. Nucl. Mater. 191–194, 1284 (1992).

    Article  Google Scholar 

  15. H. Stuhrmann and E. Duee, J. Appl. Crystallogr. 8, 538 (1975).

    Article  Google Scholar 

  16. C. Skidmore, D. Phillips, and N. Crane, Microscope 45, 127 (1997).

    CAS  Google Scholar 

  17. C. Skidmore, D. Phillips, P. Howe, J. Mang, and J. Romero, Proceedings of the 11th International Detonation Symposium (in press).

  18. O. Glatter and O. Kratky, Small Angle X-ray Scattering (Academic Press, London, United Kingdom, 1982).

    Google Scholar 

  19. D. Schaefer and K. Keefer, Phys. Rev. Lett. 56, 2199 (1986).

    Article  CAS  Google Scholar 

  20. W. Ruland, J. Appl. Crystallogr. 4, 70 (1971).

    Article  Google Scholar 

  21. J. Koberstein, B. Morra, and R. Stein, J. Appl. Crystallogr. 13, 34 (1980).

    Article  CAS  Google Scholar 

  22. G. Beaucage, J. Appl. Crystallogr. 28, 717 (1995).

    Article  CAS  Google Scholar 

  23. R. Hjelm, J. Mang, C. Skidmore, and M. Gerspacher, Proceedings of the Workshop on Materials Research Using Cold Neutrons at Pulsed Sources (World Scientific, Singapore, 1999), pp. 120–127.

    Google Scholar 

  24. P. Seeger and R. Hjelm, J. Appl. Crystallogr. 24, 467 (1991).

    Article  Google Scholar 

  25. S. Lowell and J. Shields, Powder Surface Area and Porosity (Chapman & Hall, London, United Kingdom, 1991).

    Google Scholar 

  26. R. Hjelm, J. Appl. Crystallogr. 21, 618 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mang, J.T., Skidmore, C.B., Hjelm, R.P. et al. Application of small-angle neutron scattering to the study of porosity in energetic materials. Journal of Materials Research 15, 1199–1208 (2000). https://doi.org/10.1557/JMR.2000.0170

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0170

Navigation