Skip to main content
Log in

Microstructure and dielectric properties of (Ba,Sr)TiO3 thin film produced by the polymeric precursor method

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

BaxSr1−xTiO3 (x 4 0.6) (BST) thin films were successfully prepared on a Pt(111)/TiO2/SiO2/Si(100) substrate by spin coating, using the polymeric precursor method. BST films with a perovskite single phase were obtained after heat treatment at 700 °C. The multilayer BST thin films had a granular structure with a grain size of approximately 60 nm. A 480-nm-thick film was obtained by carrying out five cycles of the spin-coating/heating process. Scanning electron microscopy and atomic force microscopy analyses showed that the thin films had a smooth, dense, crack-free surface with low surface roughness (3.6 nm). At room temperature and at a frequency of 100 kHz, the dielectric constant and the dissipation factor were, respectively, 748 and 0.042. The high dielectric constant value was due to the high microstructural quality and chemical homogeneity of the thin films obtained by the polymeric precursor method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Tokoda, Y. Hamaji, K. Tomono, and D.A. Payne, Jpn. J. Appl. Phys. 32, 4158 (1993).

    Article  Google Scholar 

  2. S.K. Dey, J.J. Lee, and P. Alluri, Jpn. J. Appl. Phys. 34, 3142 (1993).

    Article  Google Scholar 

  3. S.J. Lee, C.R. Cho, M.S. Kang, and M.S. Jang, Appl. Phys. Lett. 68, 764 (1996).

    Article  CAS  Google Scholar 

  4. C.R. Foschini, P.C. Joshi, J.A. Varela, and S.B. Desu, J. Mater. Res. 14, 1860 (1999).

    Article  CAS  Google Scholar 

  5. R. Thomas, D.C. Dube, M.N. Kamalasanan, S. Chandra, and A.S. Bhalla, J. Appl. Phys. 82, 4484 (1997).

    Article  CAS  Google Scholar 

  6. S.K. Dey and J.J. Lee, IEEE Trans. Electron. Devices ED-39, 1607 (1992).

    Article  CAS  Google Scholar 

  7. T. Mihara, H. Watanabe, and C.A. Paz de Araujo, Jpn. J. Appl. Phys. 33, 5281 (1994).

    Article  CAS  Google Scholar 

  8. M.N. Kamalasanan, N.D. Kumar, and S. Chandra, J. Appl. Phys. 74, 5674 (1993).

    Google Scholar 

  9. W. Hofman, S. Hoffmann, and R. Waser, Thin Solid Films 305, 66 (1997).

    Article  CAS  Google Scholar 

  10. N. Yanase, K. Sano, K. Abe and T. Kawakubo, Jpn. J. Appl. Phys. 37, L151 (1998).

    Article  CAS  Google Scholar 

  11. S.B. Krupanidhi and C.J. Peng, Thin Solid Films 305, 144 (1997).

    Article  CAS  Google Scholar 

  12. S. Saha and S.B. Krupanidhi, Mater. Sci. Eng. B 57, 135 (1999).

    Article  Google Scholar 

  13. K. Arita, E. Fujii, Y. Shimida, Y. Shimida, Y. Uemoto, A. Inoue, A. Masuda, T. Otsuki, and N. Suzuoka, Jpn. J. Appl. Phys. 33, 5397 (1994).

    Article  CAS  Google Scholar 

  14. L.H. Parker and A.H. Tasch, IEEE Circuit Device Mag. January, 17 (1990).

  15. T. Sakama, S. Yamamichi, S. Matsubara, H. Yamaguchi, and Y. Miyasaka, Appl. Phys. Lett. 57, 243 (1990).

    Article  Google Scholar 

  16. M. Hiratani, Y. Tarutani, T. Fukazawa, M. Okamoto, and K. Takagi, Thin Solid Films 227, 200 (1993).

    Article  Google Scholar 

  17. T. Tarashima, K. Yamamoto, K. Hirata, and Y. Bando, Appl. Phys. Lett. 58, 1527 (1990).

    Google Scholar 

  18. S. Yamamichi, T. Sakama, T. Takemura, and Y. Miyasaka, Jpn. J. Appl. Phys. 30, 2193 (1991).

    Article  CAS  Google Scholar 

  19. Y. Takeshima, K. Shiratsuyu, N. Takagi, and Y. Sakabe, Jpn. J. Appl. Phys. 36, 5870 (1997).

    Article  CAS  Google Scholar 

  20. S.I. Jang, B.C. Choi, and H.M. Jang, J. Mater. Res. 12, 1327 (1997).

    Article  CAS  Google Scholar 

  21. Y. Shimada, A. Inoque, T. Nasu, Y. Nagano, A. Matsuda, K. Arita, Y. Uemoto, E. Fujii, and T. Otsuki, Jpn. J. Appl. Phys. 35, 4919 (1996).

    Article  CAS  Google Scholar 

  22. P.C. Joshi and S.B. Krupanid, J. Appl. Phys. 73, 7627 (1993).

    Article  CAS  Google Scholar 

  23. T. Horikama, N. Mikami, T. Makita, J. Tanimura, M. Kataoka, K. Sato, and M. Nunoshita, Jpn. J. Appl. Phys. 32, 4126 (1993).

    Article  Google Scholar 

  24. A.S. Sigov and K.A. Vorotilov, J. Sol-Gel Sci. Technol. 2, 256 (1994).

    Article  Google Scholar 

  25. B.A. Baumert, L.H. Chang, A.T. Matsuda, C.J. Tracy, N.G. Lave, R.B. Gregory, and P.L. Fejes, J. Mater. Res. 13, 197 (1998).

    Article  CAS  Google Scholar 

  26. K. Abe and S. Komatsu, J. Appl. Phys. 77, 6461 (1995).

    Article  CAS  Google Scholar 

  27. M. Izuka, K. Abe, M. Koike, and N. Fukushima, Solid State Ionics 108, 99 (1998).

    Article  Google Scholar 

  28. W.J. Lee, I.K. Park, G.E. Jang, and H.G. Kim, Jpn. J. Appl. Phys. 34, 196 (1995).

    Article  CAS  Google Scholar 

  29. Y.I. Kim and C.W. Lee, Jpn. J. Appl. Phys. 35, 6153 (1996).

    Article  CAS  Google Scholar 

  30. M. Liu and D. Wang, J. Mater. Res. 10, 3210 (1995).

    Article  CAS  Google Scholar 

  31. V. Agarwal and M. Liu, J. Mater. Sci. 32, 619 (1997).

    Article  CAS  Google Scholar 

  32. V. Bouquet, S.M. Zanetti, C.R. Foschini, E.R. Leite, E. Longo, and J.A. Varela, in Innovative Processing and Synthesis of Ceramic, Glasses, and Composites, Ceramic Transactions Vol. 85, edited by N.P. Bansal, K.V. Logan, and J.P. Singh (Am. Ceram. Soc., Westerville, OH, 1998), p. 333.

    Google Scholar 

  33. S.M. Zanetti, E.R. Leite, E. Longo, and J.A. Varela, J. Mater. Res. 13, 2932 (1998).

    Article  CAS  Google Scholar 

  34. S.M. Zanetti, E.R. Leite, E. Longo, and J.A. Varela, Mater. Lett. 31, 173 (1997).

    Article  CAS  Google Scholar 

  35. J.H. Ahn, J.H. Park, and H.G. Kim, J. Korean Phys. Soc. 32, 1513 (1998).

    Google Scholar 

  36. D. Wu, A. Li, Z. Liu, H. Ling, C.Z. Ge, X. Liu, H. Wang, M. Wang, P. Lü, and N. Ming, Thin Solid Films 336, 172 (1998).

    Article  CAS  Google Scholar 

  37. T. Hayashi and T. Tanaka, Jpn. J. Appl. Phys. 34, 5100 (1995).

    Article  Google Scholar 

  38. M. Tsai, S. Sun, and T. Tseng, J. Am. Ceram. Soc. 82, 351 (1999).

    Article  CAS  Google Scholar 

  39. S. Yoon, J. Lee, and A. Safari, J. Appl. Phys. 76, 2999 (1994).

    Article  CAS  Google Scholar 

  40. D.M. Tahan, A. Safari, and L.C. Klein, J. Am. Ceram. Soc. 79, 1593 (1996).

    Article  CAS  Google Scholar 

  41. C. Basceri, S.K. Streiffer, and A.I. Kingon, J. Appl. Phys. 82, 2497 (1997).

    Article  CAS  Google Scholar 

  42. P.M. Sutton, in Progress in Dielectric, edited by J.B. Birks and J.H. Schulman (John Wiley & Sons, New York, 1960), p. 113.

    Google Scholar 

  43. M. Tomozawa, in Treatise on Materials Science and Technology, edited M. Tomozawa and R.H. Doremus (Academic, New York, 1977), p. 283.

    Google Scholar 

  44. N. Mafei and S.B. Krupanidhi, J. Appl. Phys. 72, 3617 (1992).

    Article  Google Scholar 

  45. P.C. Joshi and S.B. Krupanidhi, J. Appl. Phys. 72, 5817 (1992).

    Google Scholar 

  46. M. Sayer, A. Mansingh, A.K. Arora, and A. Lo, Integrated Ferroelectrics 1, 129 (1992).

    Article  CAS  Google Scholar 

  47. S. Maruno, T. Kuroiwa, N. Mikani, K. Sato, S. Ohumara, M. Kaida, T. Yasue, and T. Koshikawa, Appl. Phys. Lett. 73, 954 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pontes, F.M., Araujo, E.B., Leite, E.R. et al. Microstructure and dielectric properties of (Ba,Sr)TiO3 thin film produced by the polymeric precursor method. Journal of Materials Research 15, 1176–1181 (2000). https://doi.org/10.1557/JMR.2000.0166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0166

Navigation