Skip to main content
Log in

Sintering of nanopowders of amorphous silicon nitride under ultrahigh pressure

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanopowders of amorphous silicon nitride were densified and sintered without additives under ultrahigh pressure (1.0–5.0 GPa) between room temperature and 1600 °C. The powders had a mean diameter of 18 nm and contained ∼5.0 wt% oxygen that came from air-exposure oxidation. Sintering results at different temperatures were characterized in terms of sintering density, hardness, phase structure, and grain size. It was observed that the nanopowders can be pressed to a high density (87%) even at room temperature under the high pressure. Bulk Si3N4 amorphous and crystalline ceramics (relative density: 95–98%) were obtained at temperatures slightly below the onset of crystallization (1000–1100 °C) and above 1420 °C, respectively. Rapid grain growth occurred during the crystallization leading to a grain size (>160 nm) almost 1 order of magnitude greater than the starting particulate diameters. With the rise of sintering temperature, a final density was reached between 1350 and 1420 °C, which seemed to be independent of the pressure applied (1.0–5.0 GPa). The densification temperature observed under the high pressure is lower by 580 °C than that by hot isostatic pressing sintering, suggesting a significantly enhanced low-temperature sintering of the nanopowders under a high external pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ziegler, J. Hernrich, and G. Wotting, J. Mater. Sci. 22, 3041 (1987).

    Article  CAS  Google Scholar 

  2. D.W. Richerson, Am. Ceram. Soc. Bull. 52, 560 (1973).

    CAS  Google Scholar 

  3. M. Shimada, Am. Ceram. Soc. Bull. 65, 1153 (1986).

    CAS  Google Scholar 

  4. S. Prochazka and W.A. Rocco, High Temp.-High Press. 10, 87 (1978).

    CAS  Google Scholar 

  5. T. Yamada, M. Shimada, and M. Koizumi, Am. Ceram. Soc. Bull. 60, 1279 (1981).

    Google Scholar 

  6. M. Shimada, N. Ogawa, M. Koizumi, F. Dachille, and R. Roy, Am. Ceram. Bull. 60, 1281 (1981).

    Google Scholar 

  7. T. Tanaka, G. Peztotti, T. Okamoto, and M. Koizumi, J. Am. Ceram. Soc. 72, 1656 (1989).

    Article  CAS  Google Scholar 

  8. H. Hahn, J. Logas, and R.S. Averback, J. Mater. Res. 5, 609 (1990).

    Article  CAS  Google Scholar 

  9. M.J. Mayo, D.C. Hague, and D.J. Chen, Mater. Sci. Eng. A166, 145 (1993).

    Article  CAS  Google Scholar 

  10. S.C. Danforth, W. Symons, R.J. Nilsen, and R.E. Rimen, in Advanced Ceramic Processing and Technology, edited by J.G.P. Binner (Noyes, Park Ridge, NJ, 1990), Vol. 1, p. 39.

  11. W. Symons and S.C. Danforth, in Proc. 3rd. Int. Conf. Ceramic Mater. and Components for Engines, edited by V.J. Tennery (Am. Ceram. Soc., Weterville, OH, 1989), p. 67.

  12. S.C. Danforth, Nano. Mater. 1, 197 (1989).

    Article  Google Scholar 

  13. A. Pechenik, G.J. Diermarini, and S.C. Danforth, J. Am. Ceram. Soc. 75, 3283 (1992).

    Article  CAS  Google Scholar 

  14. A. Pechenik, G.J. Piermarini, and S.C. Danforth, Nanostruct. Mater. 2, 479 (1993).

    Article  CAS  Google Scholar 

  15. W.R. Cannon, S.C. Danforth, J.H. Flint, J.S. Haggerty, and R.A. Mara, J. Am. Ceram. Soc. 65, 324 (1982).

    Article  CAS  Google Scholar 

  16. W.R. Cannon, S.C. Danforth, J.H. Flint, J.S. Haggerty, and R.A. Mara, J. Am. Ceram. Soc. 65, 330 (1982).

    Article  CAS  Google Scholar 

  17. K. Nilsen, S.C. Danforth, and H. Wauter, in Advances in Ceramics, Vol 21: Ceramic Powder Science (Am. Ceram. Soc., Westerville, OH, 1987), p. 537.

  18. S.J. Cui, T.H. Zhao, X.W. Yan, X.F. Ma, Y.B. Zhu, J.H. Chen, and W. Zhao, Chin. J. High Pressure Phys. 8, 99 (1994).

    CAS  Google Scholar 

  19. H.P. Klug and L.E. Alexander, X-Ray Diffraction Procedure of Polycrystalline and Amorphous Materials (John Wiley, New York, 1954), p. 495.

    Google Scholar 

  20. R. Berriche and R.T. Holt, J. Am. Ceram. Soc. 76, 1602 (1993).

    Article  CAS  Google Scholar 

  21. W. Weiss, J. Am. Ceram. Soc. 67, 213 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Li Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YL., Liang, Y., Zheng, F. et al. Sintering of nanopowders of amorphous silicon nitride under ultrahigh pressure. Journal of Materials Research 15, 988–994 (2000). https://doi.org/10.1557/JMR.2000.0141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0141

Navigation