Skip to main content
Log in

Effects of bonding structure on the properties of plasma immersion ion processed diamondlike carbon films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hydrogenated diamondlike carbon (a-C:H DLC) films were prepared on different substrates by using C2H2–Ar plasma immersion ion processing (PIIP), and their bonding structure was modified by changing deposition parameters of the chamber pressure and the gas composition. The influence of the bonding structure on the properties of the DLC films was investigated by using ion-beam analysis techniques and Raman, infrared, and ultraviolet/visible spectroscopies and by analyzing the measured properties. The increases in density, hardness, and refractive index were found to correlate with the increase of the sp 3-bonded structure and the concurrent decrease of both the C–H bonds and the average size of sp 2-bonded domains in the films. An optimal combination of optical and mechanical properties was highly dependent on the hydrogen status existing in DLC films that can be adjusted by means of modulation of the synthesis parameters. The prepared DLC films exhibited desirable properties, which included a hardness above 28 GPa, a density above 2.3 g cm−3, a refractive index above 1.94, and band gap energies in the range of 1.8–1.85 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Neuville and A. Matthews, MRS Bull. 22(9), 22 (1997).

    Article  CAS  Google Scholar 

  2. J.C. Angus, P. Koidl, and S. Domitz, in Plasma Deposited Thin Films, edited by J. Mort and F. Jansen (Chemical Rubber, Boca Raton, FL, 1988), p. 89; Diamond and Diamond-Like Films and Coatings, edited by R.E. Clausing, L.L. Horton, J.C. Angus, and P. Koidl (Plenum, New York, 1991).

    Google Scholar 

  3. J. Robertson, Surf. Coat. Technol. 50, 185 (1992).

    Article  CAS  Google Scholar 

  4. A. Grill, Surf. Coat. Technol. 94–95, 507 (1997).

    Article  Google Scholar 

  5. E.G. Gerstner and D.R. McKenzie, Diamond Relat. Mater. 7, 1172 (1998).

    Article  CAS  Google Scholar 

  6. C.O. Morosanu, T. Stoica, C. De Martino, F. Demichelis, and A. Tagliaferro, Diamond Relat. Mater. 3, 814 (1994).

    Article  CAS  Google Scholar 

  7. D.J. Rej, Handbook of Thin Film Process Technology (Institute of Physics, Philadelphia, PA, 1996), Chap. E2.3.

    Google Scholar 

  8. M. Tuszewski, I. Henins, M. Nastasi, W.K. Scarborough, K.C. Walter, and D.H. Lee, IEEE Trans. Plasma Sci. 26, 1653 (1998).

    Article  CAS  Google Scholar 

  9. D.H. Lee, X.M. He, K.C. Walter, M. Nastasi, J.R. Tesmer, M. Tuszewski, and D.R. Tallant, Appl. Phys. Lett. 73, 2423 (1998).

    Article  CAS  Google Scholar 

  10. X.M. He, D.H. Lee, K.C. Walter, D.Q. Li, and M. Nastasi, J. Mater. Res. 14, 2080 (1999).

    Article  CAS  Google Scholar 

  11. Rusli, S.F. Yoon, H. Yang, Q. Zhang, J. Ahn, and Y.L. Fu, J. Vac. Sci. Technol. A16, 572 (1998).

    Article  Google Scholar 

  12. X.M. He, K.C. Walter, M. Nastasi, S.T. Lee, and X.S. Sun, Thin Solid Films 355–356, 167 (1999).

    Article  Google Scholar 

  13. L.R. Doolittle, Nucl. Instrum. Methods B9, 344 (1985); B15, 227 (1986).

    Article  CAS  Google Scholar 

  14. M.A. Tamor and W.C. Vassell, J. Appl. Phys. 76, 3823 (1994).

    Article  CAS  Google Scholar 

  15. D.G. McCulloch, S. Prawer, and A. Hoffman, Phy. Rev. B50, 5909 (1994).

    Google Scholar 

  16. X. Zhang, W.H. Weber, W.C. Vassell, T.J. Potter, and M.A. Tamor, J. Appl. Phys. 83, 2820 (1998).

    Article  CAS  Google Scholar 

  17. I. Nagai, A. Ishitani, H. Kuroda, M. Yoshikawa, and N. Nagai, J. Appl. Phys. 67, 2890 (1990).

    Article  CAS  Google Scholar 

  18. S.C. Seo, D.C. Ingram, and H.H. Richardson, J. Vac. Sci. Technol. A13, 2856 (1995).

    Article  Google Scholar 

  19. M.E. Adel, O. Amri, R. Kalish, and L.C. Feldman, J. Appl. Phys. 66, 3248 (1989).

    Article  CAS  Google Scholar 

  20. S.R.P. Silva, J. Robertson, Rusli, G.A.J. Amaratunga, and J. Schwan, Philos. Mag. B74, 369 (1996).

    Article  Google Scholar 

  21. J.W. Ager, IEEE Trans. Magn. MAG-29, 259 (1993).

    Article  Google Scholar 

  22. S. Uhlmann, Th. Frauenheim, and Y. Lifshitz, Phys. Rev. Lett. 81, 641 (1998).

    Article  CAS  Google Scholar 

  23. Ion-Solid Interactions: Fundamentals and applications, edited by M. Nastasi, J.W. Mayer, and J.K. Hirvonen (Cambridge University Press, Cambridge, United Kingdom, 1996), Chap. 13.

    Google Scholar 

  24. Q. Zhang, S.F. Yoon, Rusli, J. Ahn, H. Ynag, and D. Bahr, J. Appl. Phys. 84, 5538 (1998).

    Article  CAS  Google Scholar 

  25. X.M. He, J-F. Bardeau, K.C. Walter, and M. Nastasi, J. Vac. Sci. Technol. A17, 2525 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, X.M., Walter, K.C. & Nastasi, M. Effects of bonding structure on the properties of plasma immersion ion processed diamondlike carbon films. Journal of Materials Research 15, 564–571 (2000). https://doi.org/10.1557/JMR.2000.0084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0084

Navigation