Skip to main content
Log in

A novel form of carbon nitrides: Well-aligned carbon nitride nanotubes and their characterization

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Well-aligned carbon nitride nanotubes were prepared with a porous alumina membrane as a template when using electron cyclotron resonance (ECR) plasma in a mixture of C2H2 and N2 as the precursor with an applied negative bias to the graphite sample holder. The hollow structure and good alignment of the nanotubes were verified by field-emission scanning electron microscopy. Carbon nitride nanotubes were transparent when viewed by transmission electron microscopy, which showed that the nanotubes were hollow with a diameter of about 250 nm and a length of about 50–80 μm. The amorphous nature of the nanotubes was confirmed by the absence of crystalline phases arising from selected-area diffraction patterns. Both Auger electron microscopy and x-ray photoelectron spectroscopy spectra indicated that these nanotubes are composed of nitrogen and carbon. The total N/C ratio is 0.72, which is considerably higher than other forms of carbon nitrides. No free-carbon phase was observed in the amorphous carbon nitride nanotubes. The absorption bands between 1250 and 1750 cm−1 in Fourier transform infrared spectroscopy provided direct evidence for nitrogen atoms, effectively incorporated within the amorphous carbon network. Such growth of well-aligned carbon nitride nanotubes can be controlled by tuning the ECR plasma conditions and the applied negative voltage to the alumina template.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Brodie and C.A. Spindt, Adv. Electron. Electron Phys. 83, 1 (1992).

    Article  CAS  Google Scholar 

  2. I. Brodies and P.R. Schwoebel, Proc. IEEE 82, 1006 (1994).

    Article  Google Scholar 

  3. J.E. Jaskie, MRS Bull. 21(3), 59 (1996).

    Article  CAS  Google Scholar 

  4. M.W. Geis, J.A. Gregory, and B.B. Pate, IEEE Trans. Electron Devices 38, 619 (1991).

    Article  CAS  Google Scholar 

  5. M.W. Geis, J.C. Twichell, J. Macaulay, and K. Okano, Appl. Phys. Lett. 67, 1328 (1995).

    Article  CAS  Google Scholar 

  6. N.S. Xu, R.V. Latham, and Y. Tzeng, Electron. Lett. 29, 1596 (1993).

    Article  CAS  Google Scholar 

  7. K. Okano, S. Koizumi, S.R.P. Silva, and G.A.J. Amaratunga, Nature 381, 140 (1996).

    Article  CAS  Google Scholar 

  8. M.W. Geis, J.C. Twichell, N.N. Efromow, K. Krohn, and T.M. Lyszczarz, Appl. Phys. Lett. 68, 2294 (1996).

    Article  CAS  Google Scholar 

  9. I.H. Shin and T.D. Lee, J. Vac. Sci. Technol. B 17, 690 (1999).

    Article  CAS  Google Scholar 

  10. G.A.J. Amaratunga and S.R.P. Silva, Appl. Phys. Lett. 68, 2529 (1996).

    Article  CAS  Google Scholar 

  11. F.J. Himpsel, J.A. Knapp, J.A. Van Vechten, and D.E. Eastman, Phys. Rev. B 20, 624 (1979).

    Article  CAS  Google Scholar 

  12. B.B. Pate, Surf. Sci. 165, 83 (1986).

    Article  CAS  Google Scholar 

  13. G.A.J. Amaratunga and S.R.P. Silva, J. Non-Cryst. Solids 198–200, 611 (1996).

    Article  Google Scholar 

  14. E.I. Givargizov, V.V. Zhirnov, A.V. Kuznestov, and P.S. Plekhanov, J. Vac. Sci. Technol. B 74, 2030 (1996).

    Article  Google Scholar 

  15. S. Iijima, Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  16. A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tománek, P. Nordlander, D.T. Colbert, and R.E. Smalley, Science 268, 1550 (1995).

    Article  Google Scholar 

  17. W.A. de Heer, A. Châtelain, and D. Ugarte, Science 270, 1179 (1995).

    Article  Google Scholar 

  18. W.A. de Heer, J-M. Bonard, K. Fauth, A. Châtelain, L. Forró, and D. Ugarte, Adv. Mater. 9, 87 (1997).

    Article  Google Scholar 

  19. Yu.V. Gulyaev, L.A. Chemozatonskii, Z.Ja. Kosakovskaja, N.I. Sinitsyn, G.V. Torgashov, and Yu.F. Zakharchenko, J. Vac. Sci. Technol. B 13, 435 (1995).

    Article  CAS  Google Scholar 

  20. T.G. Tsai, Ph.D. Thesis of NTHU (1997).

  21. S.H. Tsai, C.W. Chao, C.L. Lee, X.W. Liu, I.N. Lin, and H.C. Shih, Electrochem. Solid-State Lett. 2, 247 (1999).

    Article  CAS  Google Scholar 

  22. S.L. Sung, S.H. Tsai, C.H. Tseng, F.K. Chiang, X.W. Liu, and H.C. Shih, Appl. Phys. Lett. 74, 197 (1999).

    Article  CAS  Google Scholar 

  23. K. Suenaga, M.P. Johansson, N. Hellgren, E. Broitman, L.R. Wallenberg, C. Colliex, J-E. Sundgren, and L. Hultman, Chem. Phys. Lett. 300, 695 (1999).

    Article  CAS  Google Scholar 

  24. M. Terrones, P. Redlich, N. Grobert, S. Trasobares, W-K. Hsu, H. Terrones, Y-Q. Zhu, J.P. Hare, C.L. Reeves, A.K. Cheetham, M. Rühle, H.W. Kroto, and D.R.M. Walton, Adv. Mater. 11, 655 (1999).

    Article  CAS  Google Scholar 

  25. S.R.P. Silva, G.A.J. Amaratunga, and J.R. Barnes, Appl. Phys. Lett. 71, 1477 (1997).

    Article  CAS  Google Scholar 

  26. T.W. Ebbesen and P.M. Ajayan, Nature 358, 220 (1992).

    Article  CAS  Google Scholar 

  27. C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. Chapelle, S. Lefrant, P. Deniard, R. Lee, and J.E. Fischer, Nature 388, 756 (1997).

    Article  CAS  Google Scholar 

  28. M. Endo and H.W. Kroto, J. Phys. Chem. 96, 6941 (1992).

    Article  CAS  Google Scholar 

  29. W.K. Hsu, M. Terrones, J.P. Hare, H. Terrones, H.W. Kroto, and D.R.M. Walton, Chem. Phys. Lett. 262, 161 (1996).

    Article  CAS  Google Scholar 

  30. W.A. de Heer, W.S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, Science 268, 845 (1995).

    Article  Google Scholar 

  31. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, and G. Wang, Science 274, 1701 (1996).

    Article  CAS  Google Scholar 

  32. M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, and D.R.M. Walton, Nature 388, 52 (1997).

    Article  CAS  Google Scholar 

  33. M. Kusunoki, M. Rokkaku, and T. Suzuki, Appl. Phys. Lett. 71, 2620 (1997).

    Article  CAS  Google Scholar 

  34. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, and P.N. Provencio, Science 282, 1105 (1998).

    Article  CAS  Google Scholar 

  35. S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, and H.J. Dai, Science 283, 512 (1999).

    Article  CAS  Google Scholar 

  36. S.H. Tsai, C.W. Chao, C.L. Lee, and H.C. Shih, Appl. Phys. Lett. 74, 3462 (1999).

    Article  CAS  Google Scholar 

  37. A. Heilmann, P. Jutzi, A. Klipp, U. Kreibig, R. Neuendorf, T. Sawitowski, and G. Schmid, Adv. Mater. 10, 398 (1998).

    Article  CAS  Google Scholar 

  38. T.G. Tsai, K.J. Chao, X.J. Guo, S.L. Sung, C.N. Wu, Y.L. Wang, and H.C. Shih, Adv. Mater. 9, 1154 (1997).

    Article  CAS  Google Scholar 

  39. O. Jessensky, F. Müller, and U. Gele, Appl. Phys. Lett. 72, 1173 (1998).

    Article  CAS  Google Scholar 

  40. C.D. Wagner, L.E. Davis, L.H. Gale, R.H. Raymond, J.A. Taylor, and M.V. Zeller, Surf. Interface Anal. 3, 211 (1981).

    Article  CAS  Google Scholar 

  41. J. Casanovas, J.M. Ricart, J. Rubio, F. Illas, and J.M. Jiménez-Mateos, J. Am. Chem. Soc. 118, 8071 (1996).

    Article  CAS  Google Scholar 

  42. M. Kawaguchi, Adv. Mater. 9, 615 (1997).

    Article  CAS  Google Scholar 

  43. D. Marton, K.J. Boyd, A.H. Al-Bayati, S.S. Todorov, and J.W. Rabalais, Phys. Rev. Lett. 73, 118 (1994).

    Article  CAS  Google Scholar 

  44. M. Barber, J.A. Connor, M.F. Guest, I.H. Hillier, M. Schwarz, and M. Stacey, J. Chem. Soc. Faraday Trans. 2 69, 551 (1973).

    Article  CAS  Google Scholar 

  45. U. Gelius, R.F. Heden, J. Hedman, B.J. Lindberg, R. Manne, R. Nordberg, R. Nordling, and K. Siegbahn, Phys. Scr. 2, 70 (1970).

    Article  CAS  Google Scholar 

  46. J.H. Kaufman, S. Metin, and D.D. Saperstein, Phys. Rev. B 39, 13053 (1989).

    Article  CAS  Google Scholar 

  47. D.L. Vien, N.B. Colthup, W.G. Fateley, and J.G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic Press, San Diego, CA, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sung, S.L., Tsai, S.H., Liu, X.W. et al. A novel form of carbon nitrides: Well-aligned carbon nitride nanotubes and their characterization. Journal of Materials Research 15, 502–510 (2000). https://doi.org/10.1557/JMR.2000.0075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0075

Navigation