Skip to main content
Log in

High-tensile ductility in nanocrystalline copper

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work we report a high-tensile ductility in a fully dense bulk nanocrystalline (nc) pure copper sample prepared by electrodeposition. A tensile ductility with an elongation to fracture of 30% was obtained in the nc Cu specimen with an average grain size of 27 nm, which is comparable to that for the coarse-grained polycrystalline Cu. An enhanced yield stress (119 MPa) and a depressed strain hardening exponent (0.22) were observed in the nc Cu sample with respect to the conventional polycrystalline Cu. The high-tensile ductility was attributed to the minimized artifacts in the nc sample, and the grain-boundary sliding deformation mechanism resulted from the numerous amount small-angle grain boundaries and the low microstrain (dislocation density).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bohn, T. Haubopld, R. Birringer, and H. Gleiter, Scr. Metall. Mater. 25, 811 (1991).

    Article  CAS  Google Scholar 

  2. P.G. Sanders, J.A. Eastman, and J.R. Weertman, in Processing and Properties of Nanocrystalline Materials, edited by C. Suryanarayana, J. Singh, and F.H. Froes (TMS, Warrendale, PA, 1996), p. 379.

    Google Scholar 

  3. C.C Koch, D. Morris, K. Lu, and A. Inoue, MRS Bull. 24(2), 54 (1999).

    Article  CAS  Google Scholar 

  4. N. Wang, Z. Wang, K.T. Aust, and U. Erb, Mater. Sci. Eng. A 237, 150 (1997).

    Article  Google Scholar 

  5. P.G. Sanders, J.A. Eastman, and J.R. Weertman, Acta Mater. 45, 4019 (1997).

    Article  CAS  Google Scholar 

  6. C.J. Youngdahl, P.G. Sanders, J.A. Eastman, and J.R. Weertman, Scr. Mater. 37, 809 (1997).

    Article  CAS  Google Scholar 

  7. U. Erb, A.M. El-Sherik, G. Palumbo, and K.T. Aust, Nanostruct. Mater. 2, 383 (1993).

    Article  CAS  Google Scholar 

  8. H.P. Klug and L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (John Wiley and Sons, New York, 1974), p. 618.

    Google Scholar 

  9. M.L. Sui, L. Lu, and K. Lu (unpublished).

  10. R.W. Hertzberg, Deformation and Fracture Mechanism of Engineering Materials, 2nd ed. (John Wiley and Sons, New York, 1983), p. 17.

    Google Scholar 

  11. G.W. Nieman, J.R. Weertman, and R.W. Siegel, J. Mater. Res. 6, 1012 (1991).

    Article  CAS  Google Scholar 

  12. R.W. Siegel and G.E. Fougere, in Nanophase Materials, edited by G.C. Hadjipanayis and R.W. Siegel (Kluwer, Dordrecht, The Netherlands, 1994), p. 233.

    Chapter  Google Scholar 

  13. C.C. Koch, Nanostruct. Mater. 2, 109 (1993).

    Article  CAS  Google Scholar 

  14. J. Schiotz, F.D. Di Tolla, and K.W. Jacobsoen, Nature 391, 561 (1998).

    Article  Google Scholar 

  15. B. Cai, Q.P. Kong, L. Lu, and K. Lu, Scr. Metall. 41, 755 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, L., Wang, L.B., Ding, B.Z. et al. High-tensile ductility in nanocrystalline copper. Journal of Materials Research 15, 270–273 (2000). https://doi.org/10.1557/JMR.2000.0043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0043

Navigation