Skip to main content
Log in

Phase segregation in binary SiO2/TiO2 and SiO2/Fe2O3 nanoparticle aerosols formed in a premixed flame

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Binary SiO2/TiO2 and SiO2/Fe2O3 nanoparticle (diameter < 100 nm) aerosols of varying mole ratios of Ti or Fe to Si were generated in a premixed Bunsen-type aerosol flame reactor. The distribution of species within the particles was investigated using transmission electron microscopy, electron energy loss spectrometry, x-ray diffraction, and Fourier transform infrared spectroscopy. Phase segregation was observed to varying degrees in qualitative agreement with segregation expected from binary phase diagrams for the bulk systems. Differences between the SiO2/TiO2 and SiO2/Fe2O3 systems can be explained by considering the variation in the thermodynamically stable liquid-phase solubility and differences in the ability of iron and titanium ions to substitute for silicon ions in the network structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.D. Ulrich, Chem. Eng. News, Aug 8 (1984).

  2. T. Izawa and S. Sudo, Optical Fibers: Materials and Fabrication (KTK Scientific Publishers, Tokyo, 1987).

    Google Scholar 

  3. G.D. Ulrich and N.S. Subramanian, Combust. Sci. Technol. 17, 119 (1977).

    Article  CAS  Google Scholar 

  4. W. Koch and S.K. Friedlander, J. Colloid Interface Sci. 140, 419 (1990).

    Article  CAS  Google Scholar 

  5. S.K. Friedlander and M.K. Wu, Phys. Rev. B 49, 3622 (1994).

    Article  CAS  Google Scholar 

  6. J.J. Helble and A.P. Sarofim, J. Colloid Interface Sci. 128, 348 (1989).

    Article  CAS  Google Scholar 

  7. M.K. Wu, R.S. Windeler, C.K.R. Steiner, T. Börs, and S.K. Friedlander, Aerosol Sci. Technol. 19, 527 (1993).

    Article  CAS  Google Scholar 

  8. Y. Xiong, M.K. Akhtar, and S.E. Pratsinis, J. Aerosol Sci. 24, 301–313 (1993).

    Article  CAS  Google Scholar 

  9. R.S. Windeler, K.E.J. Lehtinen, and S.K. Friedlander, Aerosol Sci. Technol. 27, 174 (1997).

    Article  CAS  Google Scholar 

  10. R.S. Windeler, K.E.J. Lehtinen, and S.K. Friedlander, Aerosol Sci. Technol. 27, 191 (1997).

    Article  CAS  Google Scholar 

  11. R.D. Shull, R.D. McMichael, L.J. Swartzendruber, and L.H. Bennett, in Magnetic Properties of Fine Particles: Proceedings of the International Workshop on Studies of Magnetic Properties of Fine Particles and their Relevance to Material Science, edited by J.L. Dorman and D. Fiorani (North-Holland, Amsterdam, 1992).

    Google Scholar 

  12. P.C. Schultz, J. Am. Ceram. Soc. 59, 214 (1976).

    Article  CAS  Google Scholar 

  13. C-H. Hung and J.L. Katz, J. Mater. Res. 7, 1861 (1992).

    Article  CAS  Google Scholar 

  14. S. Vemury and S.E. Pratsinis, J. Am. Ceram. Soc. 78, 2984 (1995).

    Article  CAS  Google Scholar 

  15. M.R. Zachariah, M.I. Aquino, R.D. Shull, and E.B. Steel, Nanostruct. Mater. 5, 383 (1995).

    Article  CAS  Google Scholar 

  16. M.R. Zachariah, R.D. Shull, B.K. McMillin, and P. Biswas, in Nanotechnology: Molecularly Designed Materials, edited by G.M. Chow and K.E. Gonsalves (American Chemical Society, Washington, DC, 1995), pp. 42–63.

    Google Scholar 

  17. B.K. McMillan, P. Biswas, and M.R. Zachariah, J. Mater. Res. 11, 1552 (1996).

    Article  Google Scholar 

  18. S.H. Ehrman, S.K. Friedlander, and M.R. Zachariah, J. Aerosol Sci. 29, 697 (1998).

    Article  Google Scholar 

  19. R.C. DeVries, R. Roy, and E.F. Osborn, Trans. Brit. Ceram. Soc. 53, 525 (1954).

    CAS  Google Scholar 

  20. B. Phillips and A. Muan, J. Am. Ceram. Soc. 42, 413 (1959).

    Article  CAS  Google Scholar 

  21. Mention of brand names does not imply or constitute endorsement by the National Institute of Standards and Technology.

  22. S.H. Ehrman, Ph.D. Dissertation, University of California, Los Angeles, CA (1997).

  23. B.K. Revill, in Mixing in the Process Industries, edited by N. Harnby, M.F. Edwards, and A.W. Nienow (Butterworth-Heinemann, Oxford, United Kingdom, 1992).

    Google Scholar 

  24. R.A. Dobbins and C.M. Megaridis, Langmuir 3, 254 (1987).

    Article  CAS  Google Scholar 

  25. S.V. Hering, R.C. Flagan, and S.K. Friedlander, Environ. Sci. Technol. 12, 667 (1978).

    Article  CAS  Google Scholar 

  26. J.P. Eberhart, Structural and Chemical Analysis of Materials (John Wiley & Sons, New York, 1991).

    Google Scholar 

  27. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics (John Wiley & Sons, New York, 1976).

    Google Scholar 

  28. R.H. Bruce, in Science of Ceramics, edited by G.H. Steward (Academic Press, 1965), Vol. 2.

  29. G.V. Samsonov, The Oxide Handbook, 2nd ed. (IFI/Plenum, New York, 1982).

    Book  Google Scholar 

  30. A. Muan, J. Met. 7, 965 (1955).

    CAS  Google Scholar 

  31. H.J. Stevens, in Introduction to Glass Science, edited by L.D., H.J. Stevens, and W.C. LaCourse (Plenum Press, New York, 1972).

    Google Scholar 

  32. M. Tomozawa, in Treatise on Materials Science and Technology, Vol. 17, Glass II, edited by M. Tomozawa and R.H. Doremus (Academic Press, New York, 1979).

    Google Scholar 

  33. B.E. Warren and A.G. Pincus, J. Am. Ceram. Soc. 23, 301 (1940).

    Article  CAS  Google Scholar 

  34. N. Shimizu and I. Kushiro, Geochem. Cosmochem. Acta 48, 1295 (1984).

    Article  CAS  Google Scholar 

  35. B.T. Poe, P.F. McMillan, D.C. Rubie, S. Chakraborty, J. Yarger, and J. Diefenbacher, Science 276, 1245 (1997).

    Article  CAS  Google Scholar 

  36. R.B. Greegor, F.W. Lytle, D.R. Sandstrom, J. Wong, and P. Schultz, J. Non-Cryst. Solids 55, 27 (1983).

    Article  CAS  Google Scholar 

  37. A.A. Belyustin and A.M. Pisarevskii, in The Structure of Glass, edited by E.A. Porai-Koshits, (Proceedings of the Fourth All-Union Conference on the Glassy State, Leningrad, Consultants Bureau, New York, 1966).

    Google Scholar 

  38. A.J.M. de Man, B.W.H. van Beest, M. Leslie, and R.A. van Santen, J. Phys. Chem. 94, 2524 (1990).

    Article  Google Scholar 

  39. V.A. Zeitler and C.A. Brown, J. Phys. Chem. 61, 1174 (1957).

    Article  CAS  Google Scholar 

  40. R. Szostak, V. Nair, and T.L. Thomas, J. Chem. Soc., Faraday Trans. 1 83, 487 (1987).

    Article  Google Scholar 

  41. D. Scarano, A. Zecchina, S. Bordiga, F. Geobaldo, G. Spoto, G. Petrini, G. Leofanti, M. Padovan, and G. Tozzola, J. Chem. Soc., Faraday Trans. 1. 89, 4123 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheryl H. Ehrman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrman, S.H., Friedlander, S.K. & Zachariah, M.R. Phase segregation in binary SiO2/TiO2 and SiO2/Fe2O3 nanoparticle aerosols formed in a premixed flame. Journal of Materials Research 14, 4551–4561 (1999). https://doi.org/10.1557/JMR.1999.0617

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0617

Navigation