Skip to main content
Log in

A new surface pretreatment approach for enhancing diamond nucleation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper we present a new approach of surface pretreatment for enhancing diamond nucleation. The copper substrates were fixed inside a plastic cylinder container with diamond powder diluted in water. This container was coupled to a vibration unit moving up and down at ˜300 cycles/min with a stroke of 15 mm. Finally, samples pretreated for 30 min were deposited with diamond. A high nucleation density comparable to that on substrate abraded with diamond powder was achieved. This method proved to be more effective than our ultrasonic treatment, keeping the advantages of surface preservation. Being simple and straightforward, this “shaking” pretreatment most fits the cases where a thin interlayer has to be used (like diamond coating on steel) and where the samples have a complex shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E. Field (ed.), Properties of Natural and Synthetic Diamond (Academic Press, San Diego, CA, 1992), p. 667.

    Google Scholar 

  2. J.C. Angus and C.C. Hayman, Science 241, 913 (1988).

    Article  CAS  Google Scholar 

  3. K.E. Spear, J. Am. Ceram. Soc. 72, 171 (1989).

    Article  CAS  Google Scholar 

  4. W.A. Yarbrough and R. Messier, Science 247, 688 (1990).

    Article  CAS  Google Scholar 

  5. S.J. Bull and D.S. Rickerby in Advanced Surface Coatings: A Handbook of Surface Engineering, edited by D.S. Rickerby and A. Matthews (Chapman and Hall, New York, 1991), p. 315.

    Chapter  Google Scholar 

  6. W. Zhu, R.C. McCune, J.E. de Vries, M.A. Tamor, and K.Y. Simon Ng, Diamond Relat. Mater. 4, 220 (1995).

    Article  CAS  Google Scholar 

  7. S.S. Park and J.Y. Lee, J. Appl. Phys. 69, 2618 (1991).

    Article  CAS  Google Scholar 

  8. E.J. Bienk and S. Eskildsen, Diamond Relat. Mater. 2, 432 (1993).

    Article  CAS  Google Scholar 

  9. Z. Sun, Z. Zheng, and N. Xu, Diamond Films Technol. 3, 227 (1994).

    CAS  Google Scholar 

  10. C.L. Fritzen, R.P. Livi, J.P. de Souza, and J.A.H. da Jornada, Diamond Films Technol. 7, 49 (1997).

    CAS  Google Scholar 

  11. L. Demuynck, J.C. Arnault, C. Speisser, R. Polini, and L. Le Normand, Diamond Relat. Mater. 6, 235 (1997).

    Article  CAS  Google Scholar 

  12. L. Demuynck, J.C. Arnault, R. Polini, and F. Le Normand, Surf. Sci. 377–379, 871 (1997).

    Article  Google Scholar 

  13. Y. Shibuya and M. Takaya, Surf. Coat. Technol. 106, 55 (1998).

    Article  Google Scholar 

  14. Qi Hua Fan, J. Grácio, and E. Pereira, J. Mater. Sci. 34, 1353 (1999).

    Article  CAS  Google Scholar 

  15. F. Arezzo, N. Zacchetti, and W. Zhu, J. Appl. Phys. 75, 5375 (1994).

    Article  CAS  Google Scholar 

  16. E. Anger, A. Gicquel, Z.Z. Wang, and M.F. Ravet, Diamond Relat. Mater. 4, 759 (1995).

    Article  CAS  Google Scholar 

  17. Y. Chakk, R. Brener, and A. Hoffman, Appl. Phys. Lett. 66, 2819 (1995).

    Article  CAS  Google Scholar 

  18. T. Chi and D.C. Ingram, J. Appl. Phys. 78, 5745 (1995).

    Article  Google Scholar 

  19. K.O. Schweitz, R.B. Jensen Schou, and S.S. Eskildsen, Diamond Relat. Mater. 5, 206 (1996).

    Article  CAS  Google Scholar 

  20. I. Endler, A. Leonhardt, H.J. Scheibe, and R. Born, Diamond Relat. Mater. 5, 299 (1996).

    Article  CAS  Google Scholar 

  21. E. Oesterschulze, W. Scholz, C. Mihalcea, D. Albert, B. Sobisch, and W. Kulisch, Appl. Phys. Lett. 70, 435 (1997).

    Article  CAS  Google Scholar 

  22. S. Schelz, C. Borges, L. Martinu, and M. Moisan, Diamond Relat. Mater. 6, 440 (1997).

    Article  CAS  Google Scholar 

  23. K.K. Hirakuri, M. Yoshii, G. Freidbacher, and M. Grasserbauer, Diamond Relat. Mater. 6, 1031 (1997).

    Article  CAS  Google Scholar 

  24. Q.H. Fan, A. Fernandes, E. Pereira, and J. Grácio, Vacuum 52, 193 (1999).

    Article  CAS  Google Scholar 

  25. S.D. Wolter, J.T. Glass, and B.R. Stoner, Thin Solid Films 261, 4 (1995).

    Article  CAS  Google Scholar 

  26. F. Chen, Y. Chen, and E.G. Wang, Proc. SPIE-Int. Soc. Opt. Eng. 2892, 225 (1996).

    CAS  Google Scholar 

  27. X. Li, Y. Hayashi, and S. Nishino, Jpn. J. Appl. Phys. Part 1 36, 5197 (1997).

    Article  CAS  Google Scholar 

  28. W.L. Wang, G. Sanchez, M.C. Polo, and J. Esteve, Physica Status Solidi A161, 3 (1997).

    Article  Google Scholar 

  29. H. Yagi, K. Hoshina, A. Hatta, T. Ito, T. Sasaki, and A. Hiraki, Jpn. J. Appl. Phys. Part 2, 36, L507 (1997).

    Article  CAS  Google Scholar 

  30. R. Stockel, M. Stammler, K. Janischowsky, L. Ley, M. Albrecht, and H.P. Strunk, J. Appl. Phys. 83, 531 (1997).

    Article  Google Scholar 

  31. J. Wagner, C. Wild, and P. Koidl, Appl. Phys. Lett. 59, 779 (1991).

    Article  CAS  Google Scholar 

  32. A.T. Collins, International School of Physics, “Enrico Fermi” Summer Course on the Physics of Diamond, Italy, July 23–August 2, 1996.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Hua Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Q.H., Fernandes, A., Pereira, E. et al. A new surface pretreatment approach for enhancing diamond nucleation. Journal of Materials Research 14, 4478–4481 (1999). https://doi.org/10.1557/JMR.1999.0608

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0608

Navigation