Skip to main content
Log in

Three-dimensional vapor growth mechanism of carbon microcoils

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Carbon microcoils were grown by the Ni-catalyzed pyrolysis of acetylene. The growth patterns and the tip morphologies of the carbon coils are examined in detail, and a growth mechanism is proposed. Basically, six thin fibers grew from a Ni catalyst grain during the initial growth stage immediately followed by the coalescence of the four fibers to form two fibers and then forming double-helixed carbon coils. A small amount of S and O, as well as C and Ni, was observed on the periphery of the cross section of the Ni catalyst grain. On the other hand, S and O were not observed in the central part. The driving force of the coiling of the straight fibers to form carbon coils is considered to be the strong anisotropy of the carbon deposition between different crystal faces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.R. Davis, R.J. Slawson, and G.R. Rigby, Nature 171, 756 (1953).

    Article  CAS  Google Scholar 

  2. W.R. Davis, R.J. Slowson, and G.R. Rigby, Trans. Br. Ceram. Soc. 56, 67 (1957).

    CAS  Google Scholar 

  3. R.T.K. Baker, M.A. Barber, P.S. Harris, F.S. Feates, and R.J. Waite, J. Catal. 26, 51 (1972).

    Article  CAS  Google Scholar 

  4. L.S. Lobo and D.L. Trimm, J. Catal. 29, 15 (1973).

    Article  CAS  Google Scholar 

  5. R.T.K. Baker and R.J. Waite, J. Catal. 37, 1018 (1975).

    Article  Google Scholar 

  6. M. Hillert and N. Lange, Z. Kristallogr. 111, 24 (1958).

    Article  CAS  Google Scholar 

  7. J. Calszka and M.H. Back, Carbon 22, 141 (1984).

    Article  Google Scholar 

  8. M. Audier and M. Coulon, Carbon 23, 317 (1985).

    Article  CAS  Google Scholar 

  9. R.A. Dalla Metta, A.G. Piken, and M.J. Shelef, J. Catal. 40, 173 (1975).

    Article  Google Scholar 

  10. A. Addamiano, J. Cryst. Growth 58, 617 (1982).

    Article  CAS  Google Scholar 

  11. T-K. Kang, S-D. Park, C-K. Rhee, and II-H.K. Kuk, in Proceedings of the 6th Japan-Korea Ceramics Seminar, Kobe, Japan, 1989, p. 249.

  12. S. Motojima, T. Hamamoto, H. Iwanaga, J. Cryst. Growth 158, 79 (1996).

    Article  CAS  Google Scholar 

  13. S. Motojima, S. Ueno, T. Hattori, and K. Goto, Appl. Phys. Lett. 54, 1001 (1989).

    Article  CAS  Google Scholar 

  14. S. Motojima, S. Ueno, T. Hattori, and H. Iwanaga, J. Cryst. Growth 96, 383 (1989).

    Article  CAS  Google Scholar 

  15. S. Motojima, T. Yamana, T. Araki, and H. Iwanaga, J. Electrochem. Soc. 142, 3141 (1995).

    Article  CAS  Google Scholar 

  16. U. Vogt, H. Hofmann, and V. Kramer, Key Eng. Mater. 89–91, 29 (1994).

    Google Scholar 

  17. S. Motojima, M. Kawaguchi, K. Nozaki, and H. Iwanaga, Appl. Phys. Lett. 56, 321 (1990).

    Article  CAS  Google Scholar 

  18. S. Motojima, M. Kawaguchi, K. Nozaki, and H. Iwanaga, Carbon 29, 379 (1991).

    Article  CAS  Google Scholar 

  19. S. Motojima, I. Hasegawa, M. Kawaguchi, K. Nozaki, and H. Iwanaga, J. Chem. Vapor Deposition 1, 136 (1992).

    CAS  Google Scholar 

  20. S. Motojima, I. Hasegawa, S. Kagaya, S. Asakura, M. Kawaguchi, and H. Iwanaga, J. de Phys. IV (C3), 599 (1993).

    Google Scholar 

  21. S. Motojima, H. Hirata, and H. Iwanaga, J. Chem. Vapor Deposition 3, 87 (1994).

    CAS  Google Scholar 

  22. S. Motojima, I. Hasegawa, S. Asakura, K. Ando, and H. Iwanaga, Carbon 33, 1167 (1995).

    Article  CAS  Google Scholar 

  23. S. Motojima, Y. Itoh, S. Asakura, and H. Iwanaga, J. Mater. Sci. 30, 5049 (1995).

    Article  CAS  Google Scholar 

  24. S. Motojima, S. Kagiya, and H. Iwanaga, Mater. Sci. Eng. B 34, 47 (1995).

    Article  Google Scholar 

  25. S. Motojima, S. Asakura, M. Hirata, and H. Iwanaga, Mater. Sci. Eng. B 34, L9 (1995).

    Article  Google Scholar 

  26. S. Motojima, S. Asakura, T. Kasemura, S. Takeuchi, and H. Iwanaga, Carbon 34, 289 (1996).

    Article  CAS  Google Scholar 

  27. M. Kawaguchi, K. Nozaki, S. Motojima, and H. Iwanaga, J. Cryst. Growth 118, 309 (1992).

    Article  CAS  Google Scholar 

  28. S. Amelincks, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov, and J.B. Nagy, Science 265, 635 (1994).

    Article  Google Scholar 

  29. S. Motojima and X. Chen, J. Appl. Phys. 85, 1 (1999).

    Article  Google Scholar 

  30. R.T. Yang and J.P. Chen, J. Catal. 115, 52 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Saito, T., Kusunoki, M. et al. Three-dimensional vapor growth mechanism of carbon microcoils. Journal of Materials Research 14, 4329–4336 (1999). https://doi.org/10.1557/JMR.1999.0586

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0586

Navigation