Skip to main content
Log in

Fabrication of (Ba,Pb)TiO3-based tapes with positive temperature coefficients of resistivity by the oxidation of malleable, metal-bearing precursors (the volume identical metal oxidation process)

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The feasibility of producing (Ba,Pb)TiO3-based thermistor tapes by the oxidation of malleable, metal-bearing precursors has been demonstrated. Intimate Ba–Pb–Ti–TiO2-bearing powder mixtures, produced by high-energy vibratory milling, were packed within a fugitive metal can and then compacted and formed into tapes of uniform thickness by cold drawing and rolling. The tape-shaped precursors were oxidized and converted into (Ba,Pb)TiO3-based tapes with a series of heat treatments at ≤1120 °C. With proper control of thermal treatments and chemical additions (Sb2O3 + MnO2 dopants), positive-temperature-coefficient-of-resistivity thermistors were produced that exhibited significant increases in resistivity commencing at temperatures ≥350 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Haaijman, R.W. Dam, and H.A. Klassens, Netherlands Patent No. 631, 321 (23 May 1951); P.W. Haaijman, R.W. Dam, and H.A. Klassens, German Patent No. 929, 350 (23 June 1955).

  2. O. Saburi, J. Phys. Soc. Jpn. 14, 1159 (1959).

    CAS  Google Scholar 

  3. W. Heywang, Sol. State Electron. 3, 51 (1961).

    CAS  Google Scholar 

  4. W. Heywang, J. Am. Ceram. Soc. 47, 484 (1964).

    CAS  Google Scholar 

  5. G.H. Jonker, Solid-State Electron. 7, 895 (1964).

    CAS  Google Scholar 

  6. A.L. Micheli, Bull. Am. Ceram. Soc. 56, 783 (1977).

    CAS  Google Scholar 

  7. B.M. Kulwicki, in Advances in Ceramics: Grain Boundary Phenomena in Electronic Ceramics, edited by L.M. Levinson and D.H. Hill (American Ceramic Society, Columbus, OH, 1981), Vol. 1, p. 138.

    Google Scholar 

  8. B.M. Kulwicki, J. Phys. Chem. Solids 45, 1015 (1984).

    CAS  Google Scholar 

  9. B. Huybrechts, K. Ishizaki, and M. Takata, J. Mater. Sci. 30, 2463 (1995).

    CAS  Google Scholar 

  10. W. Heywang and H. Brauer, Solid-State Electron. 8, 129 (1965).

    CAS  Google Scholar 

  11. I. Ueda and S. Ikegami, J. Phys. Soc. Jpn. 20, 546 (1965).

    CAS  Google Scholar 

  12. T. Matsuoka, Y. Matsuo, H. Sasaki, and S. Hayakawa, J. Am. Ceram. Soc. 55, 108 (1972).

    CAS  Google Scholar 

  13. M. Kuwabara, J. Am. Ceram. Soc. 64, 639 (1981).

    CAS  Google Scholar 

  14. T.Y. Tseng and Y.Y. Lu, J. Mater. Sci. Lett. 7, 182 (1988).

    CAS  Google Scholar 

  15. C-J. Ting, C-J. Peng, H-Y. Lu, and S-T. Wu, J. Am. Ceram. Soc. 73, 329 (1990).

    CAS  Google Scholar 

  16. V. Ravi and T.R.N. Kutty, J. Am. Ceram. Soc. 75, 203 (1992).

    CAS  Google Scholar 

  17. H-S. Kim, G.Y. Sung, and C.H. Kim, J. Am. Ceram. Soc. 75, 587 (1992).

    CAS  Google Scholar 

  18. D-H. Kim, I-K. Park, W-S. Um, and H-G. Kim, Jpn. J. Appl. Phys., Part 1 34, 4862 (1995).

    CAS  Google Scholar 

  19. W. Heywang, J. Mater. Sci. 6, 1214 (1971).

    CAS  Google Scholar 

  20. H. Ueoka, Ferroelectrics 7, 351 (1974).

    CAS  Google Scholar 

  21. H. Ihrig, J. Am. Ceram. Soc. 64, 617 (1981).

    CAS  Google Scholar 

  22. H.M. Al-Allak, A.W. Brinkman, G.J. Russell, and J. Woods, J. Appl. Phys. 63, 4530 (1988).

    CAS  Google Scholar 

  23. M. Kuwabara and K. Kumamoto, J. Am. Ceram. Soc. 66, C-214 (1983).

    Google Scholar 

  24. M. Kuwabara, S. Suemura, and M. Kawahara, Bull. Am. Ceram. Soc. 64, 1394 (1985).

    CAS  Google Scholar 

  25. T.Y. Tseng and S.H. Wang, Mater. Lett. 9, 164 (1990).

    CAS  Google Scholar 

  26. S-H. Wang, F-S. Hwang, and T-Y. Tseng, J. Am. Ceram. Soc. 73, 2767 (1990).

    CAS  Google Scholar 

  27. C-H. Lai and T-Y. Tseng, J. Am. Ceram. Soc. 77, 2419 (1994).

    CAS  Google Scholar 

  28. G. Goodman, in Ceramic Materials for Electronics, edited by R.C. Buchanan (Marcel Dekker, New York, 1986), p. 98.

    Google Scholar 

  29. J.S. Reed, in Principles of Ceramics Processing (John Wiley & Sons, New York, 1995), pp. 418–491, 525–541.

    Google Scholar 

  30. A.F. Dyson, Electrocomponent Sci. Technol. 11, 53 (1983).

    Google Scholar 

  31. J.G. Pepin, W. Borland, P. O’Callaghan, and R.J.S. Young, J. Am. Ceram. Soc. 72, 2287 (1989).

    CAS  Google Scholar 

  32. K.H. Sandhage, U.S. Patent No. 5 318 725 (7 June 1994).

  33. K.H. Sandhage, U.S. Patent No. 5 447 291 (5 September 1995).

  34. M.M. Antony and K.H. Sandhage, J. Mater. Res. 8, 2968 (1993).

    CAS  Google Scholar 

  35. N.B. Pilling and R.E. Bedworth, J. Inst. Met. 29, 529 (1923).

    Google Scholar 

  36. Joint Committee for Powder Diffraction Standards Cards: No. 6–235 (Ba), No. 22–1056 (BaO), No. 7–233 (BaO2), No. 5–682 (Ti), No. 21–1272 (TiO2, anatase), No. 21–1276 (TiO2, rutile), No. 4–686 (Pb), No. 5–561 (PbO, litharge), No. 14–441 (BaPb), No. 14–121 (BaPb3), No. 31–153 (Ba2Pb), No. 31–152 (Ba3Pb5), No. 14–95 (Ba5Pb3), No. 7–119 (Pb0.8Ti3.2), No. 5–626 (BaTiO3, tetragonal), No. 6–452 (PbTiO3, tetragonal), (International Center on Diffraction Data, Newton Square, PA).

  37. K.H. Sandhage, S.M. Allameh, P. Kumar, H.J. Schmutzler, D. Viers, and X-D. Zhang, Mater. Manuf. Proc. (in press).

  38. M.S. Newkirk, H.D. Lesher, D.R. White, C.R. Kennedy, A.W. Urquhart, and T.D. Claar, Ceram. Eng. Sci. Proc. 8, 879 (1987).

    CAS  Google Scholar 

  39. S. Wu, D. Holz, and N. Claussen, J. Am. Ceram. Soc. 76, 970 (1993).

    CAS  Google Scholar 

  40. Z.A. Munir, Bull. Am. Ceram. Soc. 67, 342 (1988).

    CAS  Google Scholar 

  41. H.J. Schmutzler, M.M. Antony, and K.H. Sandhage, J. Am. Ceram. Soc. 77, 721 (1994).

    CAS  Google Scholar 

  42. H.J. Schmutzler, K.H. Sandhage, and J.C. Nava, J. Am. Ceram. Soc. 79, 1575 (1996).

    CAS  Google Scholar 

  43. G.A. Ward and K.H. Sandhage, J. Am. Ceram. Soc. 80, 1508 (1997).

    CAS  Google Scholar 

  44. K.H. Sandhage, in Innovative Processing and Synthesis of Ceramics, Glasses, and Composites, edited by N.P. Bansal, K.V. Logan, and J.P. Singh (Ceram. Trans. 85, American Ceramic Society, Westerville, OH, 1997), p. 103.

    Google Scholar 

  45. G. Bruzzone, M. Ferretti, and F. Merlo, J. Less-Common Met. 128, 259 (1987).

    CAS  Google Scholar 

  46. Z.A. Nemati, M. Tabib-Azar, and M.R. De Guire, Br. Ceram. Trans. 92, 109 (1993).

    Google Scholar 

  47. G. Bruzzone and E. Franceschii, J. Less-Common Met. 52, 211 (1977).

    CAS  Google Scholar 

  48. I. Barin, Thermochemical Data of Pure Substances (VCH Ver-lagsgesellschaft, Weinheim, Germany, 1989) p. 12.

    Google Scholar 

  49. T.J. Detrie and K.H. Sandhage, in Impact of Recent Advances in the Synthesis and Processing of Ceramic Superconductors, edited by W. Wong-Ng, U. Ballachandran, and A.S. Bhalla (Ceram. Trans. 84, American Ceramic Society, Westerville, OH, 1998) p. 93.

    Google Scholar 

  50. I. Karkaya and W.T. Thompson, Bull. Alloy Phase Diagrams 8, 326 (1987).

    Google Scholar 

  51. G.H. Jonker, Mater. Res. Bull. 2, 401 (1967).

    CAS  Google Scholar 

  52. J. Daniels and K.H. Hardtl, Philips Res. Rep. 31, 489 (1976).

    CAS  Google Scholar 

  53. A.B. Alles, V.R.W. Amarakoon, and V.L. Burdick, J. Am. Ceram. Soc. 72, 148 (1989).

    CAS  Google Scholar 

  54. M. Kahn, Bull. Am. Ceram. Soc. 50, 676 (1971).

    CAS  Google Scholar 

  55. R. Wernicke, Philips Res. Rep. 31, 526 (1976).

    CAS  Google Scholar 

  56. J. Daniels and R. Wernicke, Philips Res. Rep. 31, 544 (1976).

    CAS  Google Scholar 

  57. M. Drofenik, J. Am. Ceram. Soc. 70, 311 (1987).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allameh, S.M., Sandhage, K.H. Fabrication of (Ba,Pb)TiO3-based tapes with positive temperature coefficients of resistivity by the oxidation of malleable, metal-bearing precursors (the volume identical metal oxidation process). Journal of Materials Research 14, 4319–4328 (1999). https://doi.org/10.1557/JMR.1999.0585

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0585

Navigation