Skip to main content
Log in

Si3N4–TiN–Y2O3 ceramics derived from chemically modified perhydropolysilazane

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

[Si–Y–Ti–O–C–N] multicomponent powders were synthesized by pyrolysis at 1000 °C, in NH3 flow, of chemically modified perhydropolysilazane using yttrium triisopropoxide and titanium tetrachloride. [Si–Y–Ti–O–C–N] powders yielded uniform and fine-grained Si3N4–TiN–Y2O3 ceramics by heat treatment at 1800 °C in N2. The fully densified Si3N4–TiN–Y2O3 ceramics were also synthesized by heat treatment at 1800 °C, followed by powder-vehicle hot pressing at 1800 °C in N2. The resulting ceramics revealed that TiN was dispersed as particles having a size range of about 60–600 nm and the fine particles less than 80 nm were dispersed within the β–Si3N4 matrix grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bellosi, S. Guicciardi, and A. Tampieri, J. Eur. Ceram. Soc. 9, 83 (1992).

    Article  CAS  Google Scholar 

  2. J.L. Huahg, M.T. Lee, H.H. Lu, and D.F. Lii, Mater. Chem. Phys. 45, 203 (1996).

    Article  Google Scholar 

  3. M. Miyata, Y. Yasutomi, Y. Sawai, and T. Kanai, J. Ceram. Soc. Jpn. 105(9), 761 (1997).

    Article  CAS  Google Scholar 

  4. K.J. Wynne and R.W. Rice, Annu. Rev. Mater. Sci. 14, 297 (1984).

    Article  CAS  Google Scholar 

  5. D. Seyferth and G.H. Wisemann, in Ultrastructure Processing of Ceramics, Glasses and Composites, edited by L.L. Hench and D.R. Ulrich (Wiley-Interscience, New York, 1984), pp. 2656–2671.

    Google Scholar 

  6. K.B. Schwartz, D.J. Rowcliffe, Y.D. Blum, and R.M. Laine, in Better Ceramics Through Chemistry II, edited by C. Brinker, D. Clark, and D. Ulrich (Mater. Res. Soc. Symp. Proc. 346, Pittsburgh, PA, 1986), pp. 407–412.

  7. W.R. Schmit, V. Sukumar, W.J. Hurley, Jr., R. Garcia, R.H. Doremus, and L.V. Interrante, J. Am. Ceram. Soc. 73, 2412 (1990).

    Article  Google Scholar 

  8. O. Funayama, M. Arai, Y. Tashiro, H. Aoki, T. Suzuki, K. Tamura, H. Kaya, H. Nishii, and T. Isoda, J. Ceram. Soc. Jpn. 98(1), 104 (1990).

    Article  CAS  Google Scholar 

  9. S. Yajima, K. Okamura, J. Hayashi, and M. Omori, Chem. Lett. (9), 931 (1975).

    Article  Google Scholar 

  10. S. Yajima, J. Hayashi, and M. Omori, J. Am. Ceram. Soc. 59, 324 (1976).

    Article  CAS  Google Scholar 

  11. R. West, in Ultrastructure Processing of Ceramics, Glasses and Composites, edited by L.L. Hench and D.R. Ulrich (Wiley-Interscience, New York, 1984), pp. 235–244.

    Google Scholar 

  12. R.T. Paine and C.K. Narula, Chem. Mater. 5, 269 (1993).

    Google Scholar 

  13. S. Yajima, T. Iwai, T. Yamanaka, K. Okamura, and Y. Hasegawa, J. Mater. Sci. 16, 1349 (1981).

    Article  CAS  Google Scholar 

  14. G.D. Soraru, A. Ravagni, R.D. Maschio, and G. Arturan, J. Am. Ceram. Soc. 74, 2220 (1991).

    Article  CAS  Google Scholar 

  15. G.D. Soraru, A. Ravagni, and R. Campostrini, J. Eur. Ceram. Soc. 8, 29 (1991).

    Article  Google Scholar 

  16. S. Okuzaki, Y. Iwamoto, S. Kondoh, K. Kikuta, and S. Hirano, J. Mater. Res. 14, 189 (1999).

    Article  CAS  Google Scholar 

  17. J. Bill, M. Friess, F. Aldinger, and R. Riedel, in Better Ceramics Through Chemistry VI, edited by A.K. Cheetham, C.J. Brinker, M.L. Mecartney, and C. Sanchez (Mater. Res. Soc. Symp. Proc. 346, Pittsburgh, PA, 1994), pp. 605–615.

  18. J. Bill and F. Aldinger, Adv. Mater. 7, 775 (1995).

    Article  CAS  Google Scholar 

  19. R. Riedel and W. Dressler, Ceram. Int. 22, 233 (1996).

    Article  CAS  Google Scholar 

  20. O. Funayama, T. Kato, Y. Tashiro, and T. Isoda, J. Am. Ceram. Soc. 76, 717 (1993).

    Article  CAS  Google Scholar 

  21. O. Funayama, Y. Tashiro, T. Aoki, and T. Isoda, J. Jpn. Ceram. Soc. 102(10), 908 (1994).

    Article  CAS  Google Scholar 

  22. Y. Iwamoto, H. Matsubara, and R. J. Brook, in Ceramic Processing Science and Technology, edited by H. Hausner, G.L. Messing, and S. Hirano (Ceram. Trans. 51, Am. Ceram. Soc., Westerville, OH, 1995), pp. 193–197.

  23. O. Funayama, T. Aoki, and T. Isoda, J. Jpn. Ceram. Soc. 104, 355 (1996).

    Article  CAS  Google Scholar 

  24. Y. Iwamoto, K. Kikuta, and S. Hirano, J. Mater. Res. 13, 353 (1998).

    Article  CAS  Google Scholar 

  25. Y. Iwamoto, K. Kikuta, and S. Hirano, J. Mater. Res. 14, 1886 (1999).

    Article  CAS  Google Scholar 

  26. Y. Iwamoto, K. Kikuta, and S. Hirano, in Ceramic Processing Science and Technology, edited by G.L. Messing, S. Hirano, and F. Lange (Ceram. Trans. 83, Am. Ceram. Soc., Westerville, OH, 1998), pp. 63–70.

  27. D. Seyferth, G. Wiseman, and C. Prud’homme, J. Am. Ceram. Soc. 66, C-13–14 (1983).

    Article  Google Scholar 

  28. R.M. Silverstein, G.C. Bassler, and T.C. Morrill, Spectrometric Identification of Organic Compounds, 5th ed. (John Wiley & Sons, New York, 1991), Chaps. 3 and 4.

    Google Scholar 

  29. R. Riedel, E. Kroke, A. Greiner, A.O. Gabriel, L. Ruwish, and J. Nicolich, Chem. Mater. 10, 2964 (1998).

    Article  CAS  Google Scholar 

  30. C.K. Narula, B.G. Demczyk, P. Czubarow, and D. Seyferth, J. Am. Ceram. Soc. 78, 1247 (1995).

    Article  CAS  Google Scholar 

  31. M. Herrmann, B. Balzer, Chr. Schbert, and W. Hermel, J. Eur. Ceram. Soc. 12, 287 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwamoto, Y., Kikuta, Ki. & Hirano, Si. Si3N4–TiN–Y2O3 ceramics derived from chemically modified perhydropolysilazane. Journal of Materials Research 14, 4294–4301 (1999). https://doi.org/10.1557/JMR.1999.0582

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0582

Navigation